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ABSTRACT A method is presented by which the gene
diversity (heterozygosity) ofa subdivided population can be
analyzed into its components, i.e., the gene diversities
within and between subpopulations. This method is ap-
plicable to any population without regard to the number
of alleles per locus, the pattern of evolutionary forces such
as mutation, selection, and migration, and the reproduc-
tive method of the organism used. Measures of the abso-
lute and relative magnitudes of gene differentiation among
subpopulations are also proposed.

In a genetic study of substructured populations, Wright
(1-3) showed that the variation in gene frequency
among subpopulations may be analyzed by the fixation
indices or F-statistics. He derived the formula

1 - FIT= (1 - FIs) (l-FT), [1 ]

where FIT and F1s are the correlations between two
uniting gametes to produce the individuals relative to
the total population and relative to the subpopulations,
respectively, while FST is the correlation between two
gametes drawn at random from each subpopulation.
FIT and F1s may become negative, but FST is non-
negative. The degree of gene differentiation among
subpopulations may be measured by FST.
The F-statistics are applicable to any population if

there are only two alleles at a locus. In the presence of
multiple alleles, however, Eq. 1 no longer holds except
for the special case of random differentiation with no
selection (4). Recently, I (5, 6) proposed a new method
of measuring the degree of gene differentiation between
a pair of populations. This method is based on the
identities of two randomly chosen genes within and
between populations and independent of the number of
alleles. In the following, I shall extend this method to
the case of hierarchical structure of populations and
show that the gene-frequency variation in a substruc-
tured population can be analyzed directly in terms of
heterozygosity or of gene diversity, which will be de-
fined later. This method can be applied to any popula-
tion without regard to the number of alleles at a locus
or to the pattern of evolutionary forces such as muta-
tion, selection, and migration. It is also applicable to
any organism, whether this is sexually or asexually re-
producing or whether this is diploid or nondiploid, as
far as gene frequencies can be determined. Such a

method seems to be necessary to analyze rapidly in-
creasing data on gene frequencies for protein loci.
Suppose that there are n alleles at a locus and the

frequency of the kth allele is xk in a population. The
probabilities of identity and nonidentity of two ran-
domly chosen genes are then given by J = EkX2k and
H = 1 - J, respectively. The probability of noniden-
tity, H, is a measure of genic variation of a population
and usually called heterozygosity. This word, however,
is not appropriate for a nonrandom mating population.
Therefore, I use the word gene diversity for this quantity.
I also use the abbreviated word gene identity for J. Of
course, if one is interested only in random mating
populations, the words gene diversity and gene identity
in the following may be replaced by heterozygosity and
homozygosity, respectively.

Let us now consider a population that is subdivided
into s subpopulations. Let XIk be the frequency of the
kth allele in the ith subpopulation. The gene identity
in this subpopulation is given by

[2]Ji = EXi= ,
k

while the gene identity in the total population is

JT- EX2
k

where X.k = Ei~iXik, in which wi is the weight for the
ith subpopulation (kIwi = 1). The quantity JT may be
written as

JT = E (EwViXik)2
k i

= E (EW2iX2ik + E WiWjXikXjk).
k i itj

If wi = 1/s, then

JT = (EX2 itk + E EXikxik)/s2
i k i~j k

= (FIJ1 + E Jij)IS22
i ij

[4]

where

Ji; = EZXikXjk
k

[5]
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is the gene identity between the ith and jth subpopula-
tions.

Let us now define the gene diversity between the
ith and jth populations as

Dij = Hij - (Hi + Hj)/2
= (Ji + Jj) /2- Jij [6]

where Hi = 1 - Ji and Hij = 1 - Jij. I (6, 7) have
called this parameter the minimum number of net
codon differences per locus, but in the present context
the word gene diversity seems to be better. Note that
Dij is Zk (Xk -Xjk)2/2, so that it is nonnegative. If
we use Eq. 6, Eq. 4 reduces to

JT= IZEJ + E (Ji + Jj)/2 -E Dij/S2
i isi i~i

= {sEZJ - Dij}/S2)
i i i

since Dii = 0. Therefore,

JT= (ZJi)/s - (EEDij)/s2
iij

= Js -DST [7]

where Js is the average gene identity within subpop-
ulations, and DST is the average gene diversity between
subpopulations, including the comparisons of subpop-
ulations with themselves. The gene diversity in the
total population (HT = 1 - JT) is

HT= Hs + DST, [8]
where Hs = 1 - Js. Thus, the gene diversity in the
total population can be analyzed into the gene diversi-
ties within and between subpopulations.
The absolute magnitude of gene differentiation

among subpopulations may be measured by DST or
Dm given later, while the gene differentiation relative to
the total popi ilation is given by

GST= DST/HT. [9]

The latter measure depends on the population used,
and the estimate obtained in one population cannot be
compared with that of another, unless the breeding
system is similar for the two populations. If Hs is
small, GST may be very large even if the absolute gene
differentiation is small. GST is equivalent to Wright's
FST, and we call it the coefficient of gene differentiation.
If there are only two alleles at a locus, it can be shown
that HT = 2X(1 - X) and DST = 22o, where x and
Oad are the mean and variance of the frequency of an
allele among subpopulations, respectively. Therefore,
GST becomes identical to FST, which is defined as -2 /

--) }. This property was noted by H. Harpending
(personal communication) in a numerical computation.
S. Wright (personal communication) also pointed out
that in the case of multiple alleles, GST is equal to the
weighted average of FST for all alleles, i.e., FST =

EkZ 2(k)l/E-tk(l - k), where k refers to the kth allele.

From Eqs. 8 and 9 we obtain the equation (1 - GST)
(1 - JT) = 1 - Js. The difference between this equa-
tion and Eq. 1 occurs because F1s and FIT in Eq. 1
measure the deviations of genotype frequencies from
Hardy-Weinberg proportions, while Js and JT are gene
identities. Note that Gs7, JT, and Js are all nonnegative.
As mentioned earlier, Dsy includes the comparisons

of subpopulations with themselves. If we exclude these
comparisons, we have the interpopulational gene diver-
sity defined as

Dm ~ZE Dij/1 s(s-1)
ij96

= sDST/(s - 1) [10]
This absolute measure of gene differentiation is in-
dependent of the gene diversity within subpopulations,
and thus it can be used for comparing the degrees of
gene differentiation in different organisms. Dm may
also be used to compute the interpopulational gene
diversity relative to the intrapopulational gene diver-
sity (7). That is,

RST= Dn/Hs. [11]

Formula 8 can easily be extended to the case where
each subpopulation is further subdivided into a number
of colonies. In this case, Hs may be analyzed into the
gene diversities within and between colonies (Hc and
Dcs, respectively). Therefore,

HT =HC + DCS + DST. [12]
This sort of analysis can be continued to any degree of
hierarchical subdivision. The relative degree of gene
differentiation attributable to colonies within sub-
populations can be measured by Gcs(T) = Dcs/HT. It
can also be shown that (1 - Gcs) (1 - GST)HT= HC,
where Gcs = Dcs/Hs. Expression 12 was derived on
the basis of two levels of hierarchies. If we disregard the
level of subpopulations, we have HT = Hc + DCTi
where DCT is the gene diversity between colonies within
the total population. Therefore,

DCT = Dcs + DST. [13]

In his study of human diversity, Lewontin (8) made
an analysis of gene-frequency variation. analogous to
Eq. 12, by using the Shannon information measure.
However, this measure is not directly related to any
genetic entity, and it is difficult to make a genetic
interpretation of the components corresponding to
those in Eq. 12.

Let us now consider the components of the gene
diversity (DS12) between two subpopulations that are
composed of r and s colonies. Let xik and Yjk be the fre-
quencies of the kth allele in the ith colony of the first
subpopulation and the jth colony of the second, re-

spectively. By definition,

DS12 = (JS1 + JS2)/2 -JS12

where subscripts 1 and 2 refer to the first and second
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populations, respectively. From Eq. 7, Jsj = Jc-
Dcsi (i = 1, 2). On the other hand,

JS12 =EX-ky-k
k

r 8

= E E Exiyjk/(rs).
i i k

Let Dij = (Ji + Jj)/2 - Jj,, where Jf = EkX2gk Jj =
Eky jk, and Jew = kikYjk. Then,

r e

JS12 = E { (Ji + Jj)/2 - Dij }/(rs)
i j

= (Jci + Jc2)/2 -DC12
where DC12 = ,j D 1/ (rs). Therefore, we have

DS12 = DC2- (Dcs, + Dcs32)/2. [14]

Namely, the gene diversity between two subpopula-
tions is equal to the average gene diversity between a
pair of colonies, one from each of the two subpopula-
tions, minus the average gene diversity between the
colonies within subpopulations. Formula 14 may be
used for estimating DC12 from DS12 and (Dc1 + DC2)/2.
It is noted that if we take the average of DS12 over all
combinations of subpopulations, it reduces to DST in
Eq. 13, as expected.
So far we have considered only a single locus, but

the present method is applicable to any number of

loci, if we replace the gene diversity for a locus by the
average gene diversity for all loci studied. In fact, in
order to know a general picture of gene differentiation
among subpopulations, a large number of loci that is a
random sample of the genome should be used, including
both polymorphic and monomorphic loci (7).

In the present paper, we were mainly concerned with
the gene differentiation among closely related geograph-
ical populations. If the degree of gene differentiation is
large, as is the case with a group of subspecies, and JT
is much smaller than Js, DST in Eq. 7 (or .m in Eq. 10)
is not a good measure of differentiation. In this case a
better estimate may be obtained by DsT = -loge
(JT/Js), in analogy with the genetic distance discussed
in my earlier paper (6). Similarly, a better estimate of
GST may be obtained by-loge(JT/JS)/ [-logeJTJ.
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