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The phylogeography of Y-chromosome haplogroups E (Hg E) and J (Hg J) was investigated in 12,400 subjects from
29 populations, mainly from Europe and the Mediterranean area but also from Africa and Asia. The observed 501
Hg E and 445 Hg J samples were subtyped using 36 binary markers and eight microsatellite loci. Spatial patterns
reveal that (1) the two sister clades, J-M267 and J-M172, are distributed differentially within the Near East, North
Africa, and Europe; (2) J-M267 was spread by two temporally distinct migratory episodes, the most recent one
probably associated with the diffusion of Arab people; (3) E-M81 is typical of Berbers, and its presence in Iberia and
Sicily is due to recent gene flow from North Africa; (4) J-M172(xM12) distribution is consistent with a Levantine/
Anatolian dispersal route to southeastern Europe and may reflect the spread of Anatolian farmers; and (5) E-M78
(for which microsatellite data suggest an eastern African origin) and, to a lesser extent, J-M12(M102) lineages
would trace the subsequent diffusion of people from the southern Balkans to the west. A 7%–22% contribution
of Y chromosomes from Greece to southern Italy was estimated by admixture analysis.

It has been proposed that the observed decreasing fre-
quency gradients of Y-chromosome superhaplogroups E
(Hg E) (defined by the SRY4064 mutation) and J (Hg J)
(characterized by the 12f2a-8kb allele) (Semino et al.
1996; Hammer et al. 1998; Rosser et al. 2000) reached
southwestern Europe as a result of demic expansions of
Neolithic agriculturalists from the Middle East (Semino
et al. 1996; Hammer et al. 1998). The spatial frequency
patterns of Hg E and Hg J, at this level of molecular
resolution, accommodate both infiltrations of Neolithic
agriculturalists into southwestern Europe and cultural ad-
aptations in western and northern Europe by indigenous
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Mesolithic peoples. This is consistent with the Neolithic
migration hypothesis (Ammerman and Cavalli-Sforza
1984; Cavalli-Sforza 2002). However, this first-order level
of molecular resolution does not readily reflect apparent
complexities in regional and local archaeological se-
quences. The archaeological records suggest that the
large-scale clinal patterns of Hg E and Hg J reflect a mo-
saic of numerous small-scale, more regional population
movements, replacements, and subsequent expansions ov-
erlying previous ranges. The recent findings of many bial-
lelic markers, which subdivide these two haplogroups,
give us the opportunity to investigate the contribution of
different population movements that have spread Hg E
and Hg J. Through analysis of the Alu insertion (YAP),
the M174 and SRY4064 mutations, and the 12f2a deletion,
we identified haplogroups D (YAP/M174), E (YAP/
SRY4064), and J (12f2a) Y chromosomes in 12,400 males
from 29 populations, mainly from Europe and the Medi-
terranean area but also from Africa and Asia. No subject
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Figure 1 Phylogeny and frequency distributions of Hg E and its main subclades (panels A–G). The numbering of mutations is according
to the Y Chromosome Consortium (YCC) (YCC 2002; Jobling and Tyler-Smith 2003). To the left of the phylogeny, the ages (in 1,000 years)
of the boxed mutations are reported, with their SEs (Zhivotovsky et al. 2004). Because the procedure used is based on STR data, it actually
estimates the ages of STR variation observed within the corresponding haplogroup in the studied populations. With the exception of the value
relative to SRY4064 mutation, which as been calculated as TD (with ) between the sister clades Hg E-P2 and Hg E-M33, the other valuesV p 00

were estimated as the average squared difference (ASD) in the number of repeats between all current chromosomes of a sample and the founder
haplotype, which has an expected value mt for single-step mutations (Thomas et al. 1998) and wt for a general mutation scheme, where w is
an average effective mutation rate at the loci, taken as per 25 years (Zhivotovsky et al. 2004) (microsatellite data available on�46.9 # 10
request). In some cases, because of small sample sizes or long time passed since the occurrence of the mutation, the founder haplotype could
not be reliably estimated as a modal haplotype. Therefore, we constructed it from modal alleles at single loci, although this can underestimate
the age if the candidate founder haplotype differs from the real one. To make the computation of the P2 and M35 ages independent from those
of their most-represented subclades, the STR variation observed at only the “asterisk” lineages (e.g., E-P2*) has been used. The M35 estimate
is in agreement with those of Bosch et al. (2001) and Cruciani et al. (2004 [in this issue]), obtained with different methods. The YAP insertion
was studied as an amplified fragment-length polymorphism (Hammer and Horai 1995). The other mutations were investigated in a hierarchical
order by use of the denaturing high-performance liquid chromatography (DHPLC) methodology (Underhill et al. 2001). Subhaplogroupsobserved
in this study are illustrated by continuous lines, whereas subhaplogroups discussed elsewhere are indicated by dotted lines. For simplicity, the
prefix “M” was omitted from the name of the marker mutations. Haplogroup-frequency surfaces were graphically computer reconstructed
following the Kringing procedure (Delfiner 1976) by use of the Surfer System (Golden Software) and the data reported in table 1.

belonged to the recently reported paragroup DE* (Weale
at al. 2003), and only 6 belonged to the Asian-specific
Hg D, whereas 501 were members of Hg E and 445 of
Hg J. The survey of 36 biallelic markers in the Hg E
and Hg J Y chromosomes allowed us to define the phy-
logenetic relationships of their numerous subclades (figs.
1 and 2) and to analyze their distributions in the various
geographic areas (tables 1 and 2). In addition, the survey
of eight microsatellites (figs. 3 and 4) in a subset of these
samples allowed investigation of the relative dating of
different subclades.

Hg E (fig. 1A) is observed in Africa, Europe, and the
Near East and includes the subhaplogroups E-M33, E-
M75, and the most widespread subclade, E-P2. The lat-
ter includes three clusters, two of which, E-M2 and E-
M35, are the most widespread. Haplogroups E-M33 (fig.
1B), E-M75 (fig. 1C), and the not-shown E-P2* and E-
M2 are virtually absent in European populations and ap-
pear to be geographically restricted to sub-Saharan Africa.
The E-P2* lineages were observed mainly in Ethiopians,
whereas E-M2, which is considered a signature of the
Bantu expansion (Hammer et al. 1998; Passarino et al.
1998; Scozzari et al. 1999), shows its highest frequency
(180%) in Senegal and has been sporadically observed in
North Africa and Iraq. E-M35 (fig. 1D) has been found
in Africa, the Near East, and Europe, where it is believed
to have arrived in Neolithic times (Hammer et al. 1998;
Semino et al. 2000). In particular, from among its
subgroups, E-M78 (fig. 1E) is present in Europe, the
Middle East, and North and East Africa. However,
whereas no preferential YCAII microsatellite motif is
observed in the Middle East, prevalent associations
with YCAIIa21-YCAIIb19 in Europe and YCAIIa22-
YCAIIb19 in Africa are found. E-M81 (fig. 1F) is almost
absent in Europe (with the exception of Sicily and Iberia)
and the Middle East but characterizes the majority of
the Y chromosomes of populations from northwestern

Africa. E-M123 (fig. 1G) is spread in the Near East and
is also observed in North Africa and Europe but does
not reach the western European regions. E-M281 and
E-M329 are geographically restricted, having been seen
only in Ethiopians (two subjects each). The remaining
37 E-M35* Y chromosomes were found mainly in Af-
rica, with a high frequency in the Ethiopians and the
Khoisan.

Both phylogeography and microsatellite variance sug-
gest that E-P2 and its derivative, E-M35, probably origi-
nated in eastern Africa. This inference is further supported
by the presence of additional Hg E lineal diversification
and by the highest frequency of E-P2* and E-M35* in
the same region. The distribution of E-P2* appears lim-
ited to eastern African peoples. The E-M35* lineage
shows its highest frequency (19.2%) in the Ethiopian
Oromo but with a wider distribution range than E-P2*.
Indeed, it is also found at high frequency (16.7%) in the
Khoisan of South Africa (Underhill et al. 2000; Cruciani
et al. 2002) (suggesting, once again, their ancient rela-
tionship with Ethiopians) and observed in southern Eu-
rope (present study). It is interesting that both E-P2*
and E-M35* and their derivatives, E-M78 and E-M123,
exhibit in Ethiopians the 12-repeat allele at the DYS392
microsatellite locus, an allele scarcely seen (Y-Chromo-
some STR Database), especially in other haplogroups
and other populations (A.S.S.-B., unpublished data). In
addition, the Ethiopian DYS392-12 allele is usually as-
sociated with the unusually short DYS19-11 allele, which
is typical of this area. These findings are not easily ex-
plained. One possible scenario is that an ancient differ-
entiation of the E-P2 haplogroup occurred in loco (East
Africa). However, this also implies a low mutability of
the associated microsatellite motif (DYS392-12/DYS19-
11). Alternatively, the microsatellite motif may be due
to homoplasy.

The first scenario is more likely, since this unique mi-
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Figure 2 Phylogeny and frequency distributions of Hg J and its main subclades (panels A–F). The numbering of mutations is according
to the YCC (YCC 2002; Jobling and Tyler-Smith 2003). To the left of the phylogeny, the ages (in 1,000 years) of the boxed mutations are
reported, with their SEs (Zhivotovsky et al. 2004). With the exception of the age relative to the 12f2 mutation, which has been estimated as
TD (with ) between the combined data of the two sister clades Hg J-M267 and Hg J-M172, the other values have been determined asV p 00

ASD, as described in figure 1. The 12f2a marker was examined as an RFLP by Southern blotting (Passarino et al. 1998); the other mutations
were investigated in hierarchical order by use of DHPLC methodology (Underhill et al. 2001). Three new mutations, M327, M280, and M390,
were found in this study. M327 is a TrC transition at np 404 within the STS containing mutation M92, M280 is a GrA transition at np 330
within the STS containing the mutation M67, and M390 is an A insertion after nt 175 in the STS containing the M365 mutation. Conventions
used are the same as for figure 1. The frequency surfaces were drawn using the data reported in table 2 and, for Hg J (panel A), also the data
from Rosser et al. (2000), Quintana-Murci et al. (2001), and Scozzari et al. (2001).

crosatellite haplotype occurs in E-P2*, E-M35*, and E-
M78 but is almost absent in all other haplogroups and
populations. In addition, the high stability of the DYS392
locus (Brinkmann et al. 1998; Nebel et al. 2001) and of
the shorter alleles of DYS19 (Carvalho-Silva et al. 1999)
has been reported elsewhere. Moreover, the observation
that the derivative E-M78 displays the DYS392-12/
DYS19-11 haplotype suggests that it also arose in East
Africa. This is illustrated by the microsatellite network
(fig. 3, shaded area), which reveals that the Ethiopian
branch harboring DYS392-12 is not shared with either
Near Eastern or European populations. The very low fre-
quency of E-M123 in Ethiopia does not allow any infer-
ences about the origin of this clade. The network of E-
M78 and that of E-M123 are in agreement with the
hypothesis of their ancient presence in the Near East and
their subsequent expansion into the southern Balkans.
The divergence time (TD) (Zhivotovsky 2001) between
the Near East and European lineages has been estimated
to a range of 7–14 thousand years (ky) ago. Cinnioğlu et
al. (2004) found a high degree of variance of E-M123 in
Turkey, which has been interpreted as being due to mul-
tiple founders rather than a single early dispersal event
that has remained geographically circumscribed. E-M81
has the lowest variance and a compact network (fig. 3),
indicating either its relatively recent origin followed by
expansion or its recent expansion after a bottleneck. In
Europe, this clade is restricted to the southernmost
regions, such as Iberia and Sicily, and the absence of mi-
crosatellite variation suggests a very recent arrival from
North Africa, consistent with previous observations
(Bosch et al. 2001). The frequency pattern and the mi-
crosatellite network of E-M2(xM191) (fig. 3) indicate a
West African origin followed by expansion, a result that
is in agreement with the findings of Cruciani et al. (2002).

The 12f2a mutation, which characterizes haplogroup
J, was observed in 445 subjects. Hg J harbors two main
clades (see phylogeny in fig. 2), J-M267 (Cinnioğlu et
al. 2004) and J-M172. J-M172 is the more frequent and
currently differentiates into eight subhaplogroups defined
by mutations M12/M102, M47, M67/M92, M68, M137,
M158, M339, and M340, four of which occur at infor-
mative frequencies. The less-heterogeneous clade J-M267
includes all of the other 12f2a Y chromosomes that were

reported elsewhere as Eu10 (Semino et al. 2000). Its
current level of subdivision includes five scarcely rep-
resented subclusters defined by mutations M62, M365,
M367/M368, and M369 (Cinnioğlu et al. 2004) and by
the new mutation M390. Similar to Hg E, different geo-
graphic distributions are displayed by the various sub-
haplogroups of J (fig. 2). J-M172 (fig. 2C), which occurs
as frequently as J-M267 (fig. 2B) in some Middle Eastern
populations, is the more prevalent in Europe. Among its
subclades, J-M137, J-M158, J-M339, and J-M340 were
reported elsewhere as single observations (Underhill et
al. 2000; Cinnioğlu et al. 2004) and have not been ob-
served in this study. Likewise, J-M47 and J-M68 char-
acterize very few Near Eastern and Asian samples. How-
ever, J-M12 and J-M67 and their derivatives are in-
formative, being diffused in Europe and observed also
in Asia. J-M12 is almost totally represented by its sub-
lineage J-M102, which shows frequency peaks in both
the southern Balkans and north-central Italy (fig. 2D).
The history underlying this apparent affinity remains
uncertain. J-M67 (fig. 2E) includes J-M67* lineages (not
shown), which are most frequent in the Caucasus, and
J-M92, which indicates affinity between Anatolia and
southern Italy (fig. 2F). Finally, the J-M172* lineages
display a decreasing frequency gradient from the Near
East toward western Europe and strongly contribute to
the overall gradient of Hg J. J-M267 is notable, since
this haplogroup shows its highest frequencies in the
Middle East, North Africa, and Ethiopia (fig. 2B) and
its lowest in Europe, having been observed only in the
Mediterranean area. Of its five subhaplogroups, only
two have been observed: the J-M365 (in two Turks and
one Georgian) and the new subclade J-M390 (in one
Lebanese).

The extent of differentiation of Hg J, observed both
with the biallelic and microsatellite markers, points to
the Middle East as its likely homeland. In this area, J-
M172 and J-M267 are equally represented and show the
highest degree of internal variation, indicating that it is
most likely that these subclades also arose in the Middle
East. However, their different frequencies in different
Middle Eastern countries and in Europe suggest distinct
demography processes, possibly in population groups that
underwent different temporal expansions. This is espe-
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Table 1

Population Frequencies of Hg E and Its Subclades

POPULATION/REGIONa

HG E FREQUENCY OF E SUBHAPLOGROUPb HG D

No. % 2*c 58 191 154 P2* 329 35* 123 78 81 281 33 75 No. %

Arab (Morocco)d (49) 37 75.5 42.9 32.6
Arab (Morocco)e (44) 32 72.7 6.8 2.3 11.4 52.3
Berber (Morocco)d (64) 55 85.9 4.7 10.9 68.7 1.6
Berber (north-central Morocco)e (63) 55 87.3 9.5 7.9 1.6 65.1 3.2
Berber (southern Morocco)e (40) 35 87.5 2.5 7.5 12.5 65.0
Saharawish (North Africa)e (29) 24 82.7 3.4 75.9 3.4
Algerian (32) 21 65.6 3.1 3.1 6.3 53.1
Tunisian (58) 32 55.2 3.4 3.4 5.2 15.5 27.6
Malif (44) 37 84.1 20.5 29.5 34.1
Burkina Fasod (106) 105 99.1 67.9 1.9 13.2 .9 3.8 11.3
North Cameroond (152) 69 45.4 20.3 12.5 1.3 7.9 3.3
South Cameroond (89) 83 93.3 43.8 40.4 9.0
Senegaleseg (139) 136 97.8 80.6 .7 2.9 5.0 .7 .7 5.0 2.9
Bantu (South Africa)f (53) 44 83.0 54.7 5.7 3.8 1.9 1.9 15.1
Khoisan (South Africa)d (90) 59 65.6 31.1 11.1 1.1 16.7 5.6
Sudanf (40) 12 30.0 17.5 5.0 2.5 5.0
Ethiopian (Oromo)g (78) 62 79.5 12.8 2.6 19.2 5.1 35.9 2.6 1.3
Ethiopian (Amhara)g (48) 22 45.8 10.4 10.4 2.1 22.9
Iraqi (218) 20 9.2 .9 2.8 5.5
Lebanese (42) 8 19.0 4.8 11.9 2.4
Ashkenazim Jewish (77) 14 18.2 1.3 11.7 5.2
Sephardim Jewish (40) 12 30.0 2.5 10.0 12.5 5.0
Turkish (Istanbul) (46) 6 13.0 2.2 8.7 2.2
Turkish (Konya) (117) 17 14.5 1.7 12.8 1 .9
Georgian (41) 0 .0
Balkarian (southern Caucasus) (39) 1 2.6 2.6
Northern Greek (Macedonia) (59) 12 20.3 1.7 18.6
Greek (84) 20 23.8 2.4 21.4
Albanian (44) 11 25.0 25.0
Croatian (57) 5 8.8 1.8 7.0
Hungarian (53) 5 9.4 1.9 7.5
Ukrainian (93) 8 8.6 1.1 7.5
Polish (99) 4 4.0 4.0
Italian (north-central Italy) (56) 6 10.7 10.7
Italian (Calabria 1) (80) 18 22.5 1.3 2.5 16.3 1.3 1.3
Italian (Calabria 2)h (68) 16 23.5 1.5 13.2 5.9 2.9
Italian (Apulia) (86) 12 13.9 2.3 11.6
Italian (Sicily) (55) 15 27.3 5.5 3.6 12.7 5.5
Italian (Sardinia) (139) 7 5.0 .7 1.4 2.9
Dutch (34) 0 .0
Bearnais (27) 1 3.7 3.7
French Basque (45) 0 .0
Spanish Basque (48) 1 2.1 2.1
Catalan (33) 2 6.1 3.0 3.0
Andalusian (76) 7 9.2 3.9 5.3
Andalusiane (37) 4 10.8 2.7 2.7 5.4
Hindu (India) (47) 0 .0
Tharu (Nepal) (98) 0 .0 4 4.1
Chinese (65) 0 .0 1 1.5

a Numbers in parentheses indicate the number of Y chromosomes analyzed. The population samples include those reported by Semino et al.
(2000, 2002), Passarino et al. (1998), and Al-Zahery et al. (2003).

b An asterisk (*) indicates chromosomes that belong to a clade but not its subclades.
c The clade 2* also includes the subhaplogroups classified elsewhere as M116.1, M155 (Underhill et al. 2000), M10, and M149 (Cruciani

et al. 2002).
d Data from Cruciani et al. (2002) and F. Cruciani, personal communication.
e Data from Bosch et al. (2001).
f Data from Underhill et al. (2000).
g Data from Semino et al. (2002).
h The sample “Calabria 2” refers to the Albanian community of the Cosenza province (Torroni et al. 1990).
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Table 2

Population Frequencies of Hg J and Its Subclades

POPULATION/REGIONa

FREQUENCY OF J SUBHAPLOGROUPb

HG J M172 M267c

No. % 172* 158 12* 102* 280 47 67* 92* 327 68 Total % 267* 62 365 390

Arab (Morocco)d (49) 20 20.4 10.2 10.2 10.2
Arab (Morocco)e (44) 7 15.9 2.3 13.6
Berber (Morocco)d (64) 4 6.3 6.3
Berber (Morocco)e (103) 11 10.7 2.9 7.8
Saharawish (North Africa)e (29) 5 17.2 17.2
Algerian (20) 7 35.0 35.0
Tunisian (73) 25 34.2 1.4 1.4 1.4 4.1 30.1
Sudanf (40) 0 .0
Ethiopian (Amhara) (48) 17 35.4 2.1 2.1 33.3
Ethiopian (Oromo) (78) 3 3.8 1.3 1.3 2.6
Iraqi (156) 79 50.6 10.2 2.6 2.6 4.5 1.3 1.3 22.4 28.2
Lebanese (40) 15 37.5 20.0 2.5 2.5 25.0 10.0 2.5
Muslim Kurdg (95) 38 40.0 28.4 11.6
Palestinian Arabg (143) 79 55.2 16.8 38.4
Bedouing (32) 21 65.6 3.1 62.5
Ashkenazim Jewish (82) 31 37.8 12.2 1.2 4.9 4.9 23.2 14.6
Sephardim Jewish (42) 17 40.5 23.8 2.4 2.4 28.6 11.9
Turkish (Istanbul) (73) 18 24.7 11.0 2.7 4.1 17.8 5.5 1.4
Turkish (Konya) (129) 41 31.8 17.8 .8 .8 3.1 4.6 .8 27.9 3.1 .8
Georgian (45) 15 33.3 8.9 2.2 13.3 2.2 26.7 4.4 2.2
Balkarian (southern Caucasus) (16) 4 25.0 12.5 6.3 6.3 25.0
Northern Greek (Macedonia) (56) 8 14.3 3.6 5.4 3.6 12.5 1.8
Greek (92) 21 22.8 4.3 6.5 2.2 4.3 3.3 20.6 2.2
Albanian (56) 13 23.2 14.3 3.6 1.8 19.6 3.6
Croatian (48) 3 6.2 6.2 6.2
Hungarian (49) 1 2.0 2.0 2.0
Ukrainian (82) 6 7.3 2.4 2.4 1.2 1.2 7.3
Polish (97) 1 1.0 1.0 1.0
Italian (north-central Italy) (52) 14 26.9 5.8 9.6 9.6 1.9 26.9
Italian (Calabria 1) (57) 14 24.6 14.0 1.8 3.5 3.5 22.8 1.8
Italian (Calabria 2)h (45) 9 20.0 4.4 8.9 6.6 20.0
Italian (Apulia) (86) 27 31.4 16.3 3.5 2.3 7.0 29.1 2.3
Italian (Sicily) (42) 10 23.8 11.9 2.4 2.4 16.7 7.1
Italian (Sardinia) (144) 18 12.5 2.8 2.1 2.8 2.1 9.7 2.8
Dutch (34) 0 .0
Bearnais (26) 2 7.7 3.8 3.8 7.7
French Basque (44) 6 13.6 13.6 13.6
Spanish Basque (48) 0 .0
Catalan (28) 1 3.6 3.6 3.6
Andalusian (93) 8 8.6 2.2 1.1 3.2 1.1 7.5 1.1
Hunza (Pakistan)f (38) 5 13.2 2.6 7.9 10.5 2.6
Pakistan-Indiaf (88) 21 23.9 3.4 1.1 2.3 3.4 1.1 4.5 15.9 7.9
Hindu (India) (76) 4 5.3 2.6 1.3 1.3 5.3
Tharu (Nepal) (50) 7 14.0 8.0 6.0 14.0
Central Asiaf (184) 40 21.7 6.5 .5 2.2 .5 1.1 .5 .5 11.9 9.2 .5
Chinese (65) 0 .0

a Numbers in parentheses indicate the number of Y chromosomes analyzed. The population samples include those reported by Santachiara-
Benerecetti et al. (1993), Semino et al. (1996, 2000, 2002), Passarino et al. (1998), and Al-Zahery et al. (2003).

b An asterisk (*) indicates chromosomes that belong to a clade but not its subclades.
c All chromosomes classified as J* (because of not belonging to J-M172) by Cruciani et al. (2002), Nebel et al. (2001), and Bosch et al.

(2001) were considered members of J-M267*.
d Data from Cruciani et al. (2002).
e Data from Bosch et al. (2001). These samples were not subclassified and are reported only in the “M172 Total” column.
f Data from Underhill et al. (2000).
g Data from Nebel et al. (2001).
h The sample “Calabria 2” refers to the Albanian community of the Cosenza province (Torroni et al. 1990).
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Figure 3 Networks of the STR haplotypes of the main subhaplogroups of Hg E. These networks were obtained by the analysis of a subset
of the samples for the following microsatellites: YCAIIa, YCAIIb (Mathias et al. 1994), DYS19, DYS389, DYS390, DYS391, and DYS392
(Roewer et al. 1996). The phylogenetic relationships between the microsatellite haplotypes were determined using the program NETWORK
2.0b (Fluxus Engineering). Networks were calculated by the median-joining method ( ) (Bandelt et al. 1995), weighting the STR loci� p 0
according to their relative variability in Hg E and, with the exception of E-M81, after having processed the data with the reduced-median
method. Circles represent the microsatellite haplotypes. Unless otherwise indicated by a number on the pie chart, the area of the circles and
the area of the sectors are proportional to the haplotype frequency in the haplogroup and in the geographic area indicated by the color. The
smallest circle of each network corresponds to one Y chromosome. The shaded area in E-M78 indicates the branch characterized by the DYS392-
12 allele.

cially true for J-M172. The majority of its lineages are
undifferentiated and thus potentially paraphyletic (fig.
4). Although J-M172* encompasses most of the M172
Y chromosomes in continental Europe and India (Kivi-
sild et al. 2003; present study), their degree of affinity
and shared history remain uncertain. The J-M67*, J-
M92, and J-M102 representatives reflect more distinc-
tive origins and dispersal patterns. Whereas J-M67* and
J-M92 show higher frequencies and variances in Europe
(0.40 and 0.32, respectively) and in Turkey (0.32 and
0.30, respectively [Cinnioğlu et al. 2004]) than in the
Middle East (0.17 and 0.09, respectively), J-M12(M102)
shows its maximum frequency in the Balkans. In spite
of the relative high value of variance of this haplogroup
in Turkey (Cinnioğlu et al. 2004)—which, however, could

be due to multiple arrivals—the pattern of distribution
and the network of J-M12(M102) (figs. 2 and 4) are
consistent with its diffusion in Europe from the southern
Balkans. On the contrary, J-M67* and J-M92 could have
arrived in Europe from Anatolia via the Bosphorus isth-
mus, as well as by seafaring Neolithic populations who
reached southern Italy. J-M67* and J-M92 could rep-
resent, at least in part, the Y-chromosome component
that King and Underhill (2002) found to correlate with
the distribution, from Anatolia toward Europe, of ar-
chaeological painted pottery and anthropomorphic figu-
rines. On the other hand, J-M67– and J-M12–related
lineages have been observed in Pakistan and India; thus,
they probably have marked other migratory events, but
the small number of J subclades in these regions (Un-
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Figure 4 Network of the STR haplotypes of the main subhaplogroups of Hg J. These networks were obtained by the analysis of a subset
of the samples for the following microsatellites: YCAIIa, YCAIIb (Mathias et al. 1994), DYS388 (Thomas et al. 1999), DYS19, DYS389,
DYS390, DYS391, and DYS392 (Roewer et al. 1996), by the same procedures used for Hg E (fig. 3). Apart from the YCAII system in Hg J-
M267, which was considered as a stable marker in this haplogroup (see text), the STR loci were weighted according to their relative variability
in Hg J. The most complex networks, J-M267* and J-M172*, were calculated by the median-joining method ( ) on the preprocessed data� p 0
with the reduced-median method; the other networks were calculated by using only the reduced-median algorithm. The shaded area in J-M267*
indicates the branch characterized by the YCAIIa-22/YCAIIb-22 motif. For the areas of the circles and the sectors, see figure 3. The expansion
time of this branch was calculated using TD (Zhivotovsky 2001), which gives 8.7 and 4.3 ky, respectively, for the earliest and the latest bounds
of the expansion time. The former estimate was calculated by using the variance in the number of repeats of the remaining six loci, assuming
a variance at the beginning of population separation (V0) equal to zero, and thus gives an upper bound for the TD (Zhivotovsky 2001). The
latter assumes a linear approximation of the within-population variance in repeat scores as a function of time and takes a predicted value of
V0 prior to population split; because the linearity can be achieved in a case of infinite population size only and because each survived haplogroup
started from one individual and could maintain small size for a long time, the linear approximation overestimates V0 and thus might be considered
as a lower bound for divergence times (L.A.Z., unpublished method).

derhill et al. 2000; Kivisild et al. 2003; present study)
does not allow an evaluation of the mode and time of
their arrival.

Southern Italy (Apulia and Calabria) contains sites of
the early Neolithic period (Whitehouse 1968), but we
know from history that these regions were subsequently
colonized by the Greeks (Peloponnesians). To test the rela-
tive contribution of Greek colonists versus putative ear-
lier Neolithic settlers, an admixture analysis (Bertorelle
and Excoffier 1998) was performed, using E-M78 and
J-M172(xM12) as signatures of Greek and Anatolian
lineages, respectively. The Anatolian source population
was based on 523 Turks, of whom 118 were J-
M172(xM12) and 25 were E-M78 (Cinnioğlu et al.

2004). The Greek population comprised 36 Pelopon-
nesian samples, 5 of which were J-M172(xM12) and 17
of which were E-M78 (R.K., unpublished data). In spite
of the small Peloponnesian sample size, the high E-M78
frequency (47%) observed here is consistent with that
(44%) independently found in the same region (Di Gia-
como et al. 2003) for the YAP chromosomes harboring
microsatellite haplotypes (A. Novelletto, personal com-
munication) typical of Hg E-M78 (Cruciani et al. 2004
[in this issue]; present study). The admixture analysis
yielded an admixture proportion from Greece of
0.07�0.15 for the Calabrian samples and of 0.22�0.15
for the Apulian samples. SD was determined by boot-
strapping 1,000 replicates.
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The TD of the two sister clades J-M267 and J-M172
was estimated, with , and turned out to be 31.7V p 00

ky (see phylogeny in fig. 2). This estimate, however, is not
easily interpretable, because such old haplogroups are dif-
ferently represented in different regions where they prob-
ably underwent multiple bottlenecks. The lower internal
variance of J-M267 in the Middle East and North Africa,
relative to Europe and Ethiopia, is suggestive of two dif-
ferent migrations. In the absence of additional binary
polymorphisms allowing further informative subdivision
of J-M267, the YCAII microsatellite system provides im-
portant insights. The majority of J-M267 Y chromosomes
harbor the single-banded motif YCAIIa22-YCAIIb22
in the Middle East (170%) and in North Africa
(190%), whereas this association is much less frequent
in Ethiopia and only sporadically found in southern
Europe. Considering the distribution of this YCAII sin-
gle-banded pattern—which, besides the usual stepwise
mutational mechanism, could be due to a stable mu-
tational event (one locus deletion or a single-nucleotide
mutation in the primer sequence)—we suggest that the
motif YCAIIa22-YCAIIb22 potentially characterizes a
monophyletic clade of J-M267. A comparable situation
is observed within Hg I-M170, in which the single-banded
haplotype YCAIIa21-YCAIIb21 parallels a biallelic
marker (O.S., unpublished data).

According to this interpretation, the first migration,
probably in Neolithic times, brought J-M267 to Ethiopia
and Europe, whereas a second, more-recent migration
diffused the clade harboring the microsatellite motif
YCAIIa22-YCAIIb22 in the southern part of the Middle
East and in North Africa. In this regard, it is worth
noting that the median expansion time of the J-M267-
YCAIIa22-YCAIIb22 clade was estimated to be 8.7–4.3
ky, by use of the TD approach (see fig. 4 legend), and
that this clade includes the modal haplotype DYS19-14/
DYS388-17/DYS390-23/DYS391-11/DYS392-11 of the
Galilee (Nebel et al. 2000) and of Moroccan Arabs
(Bosch et al. 2001). These results are consistent with the
proposal that this haplotype was diffused in recent time
by Arabs who, mainly from the 7th century A.D., ex-
panded to northern Africa (Nebel et al. 2002).

In conclusion, high-resolution Y-chromosome haplo-
typing and particular microsatellite associations reveal
regional population differentiations, an East Africa home-
land for E-M78, and recent gene-flow episodes consis-
tent with the Neolithic in Europe. In particular, the spa-
tial distributions of J-M172*, J-M267, E-M78, and
E-M123 indicate expansions from the Middle East to-
ward Europe that most likely occurred during and after
the Neolithic, that of J-M102 illustrates population ex-
pansions from the southern Balkans, and that of E-M81
reveals recent gene flow from North Africa. Distinct his-
tories of J-M267* lineages are suggested: an expansion
from the Middle East toward East Africa and Europe

and a more-recent diffusion (marked by the YCAIIa-22/
YCAIIb-22 motif) of Arab people from the southern part
of the Middle East toward North Africa.

Acknowledgments

We are grateful to all the donors for providing blood samples
and to the people who contributed to their collection. In par-
ticular, we thank Ahmet Arslan, Agnese Brega, and B. Kindar
(for samples from Turks); Jaume Bertranpetit and Anne Cam-
bon-Thomsen (for samples from Catalans, Basques, and Bear-
nais); Aiping Liu (for samples from Chinese); J. Garcia-Puche
(for samples from Andalusians); and Adriana Grasso and F.
Pignatelli (for samples from Apulians). We warmly acknowl-
edge two anonymous reviewers for their helpful and construc-
tive criticism. This research was supported by Progetto Fin-
alizzato CNR “Beni Culturali” (A.S.S.-B.), National Institutes
of Health grants GM28428 and GM55273 (L.L.C.-S.), Pro-
getto MIUR-CNR Genomica Funzionale-Legge 449/97 (A.T.
and L.L.C.-S), Fondo d’Ateneo per la Ricerca dell’Università
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