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1. Introduction

It has long been known that different regions in
the genome mutate at vastly different rates (Tamura
and Nei, 1993). In particular, for the mitochondrial
DNA (mtDNA) two hyper-variable segments (HVS)
have been identified and named HVS-I and HVS-
II. Even within these segments, the mutation rates
of the various sites are not fixed. Tamura and Nei
(1993) show that there is strong statistical support
for a Gamma “prior” distribution of mutation rates
across the mtDNA control region (which contains
both HVS-I and HVS-II), with a shape parameter
α = 0.1, implying many orders of magnitude differ-
ence in rates between the fastest and slowest mutat-
ing sites in these segments. Yang (1993) described
methodologies for integrating this Gamma prior into
maximum-likelihood phylogeny estimation.

Several authors have developed approaches to
estimating site-specific in the mtDNA HVS-I. For
a survey of previous approaches, see Bandelt et al.
(2006). As an example, we consider here the ap-
proaches of Bandelt et al. (2006) themselves and
of two other efforts, by Excoffier and Yang (1999)
and Meyer and von Haeseler (2003). Both of these
latter approaches are approximate maximum likeli-
hood methods, attempting to reconstruct the full dis-
tribution over possible tree topologies and estimate
parameters simultaneously. Because of the extreme
difficulty of this task, especially assuming rate vari-
ation, even for moderately sized datasets (up to sev-
eral hundred samples), as used in these two papers,
they develop different approximation approaches.
Excoffier and Yang (1999) generate a limited set of
parsimonious candidate trees, and investigate the ro-
bustness of their estimates to their choice of topol-
ogy from this set. Meyer and von Haeseler (2003),
on the other hand, alternate between estimating phy-
logeny and mutation rates (where the phylogeny es-
timation step assumes known, but potentially vari-
able, mutation rates). Bandelt et al. (2006) discuss
these approaches and explore their limitations and
shortcomings, which they consider to be critical.
They therefore conclude that the best approach for
mutation probability estimation is to construct a best
tree (in their case, using parsimony considerations),
and estimate the mutation probabilities by simple
counting on this tree. They apply their methodology
to about 800 samples.

Our approach fundamentally differs from these
approaches and previous ones, in avoiding the con-
struction of detailed phylogenetic trees. Instead we
rely on partial, highly reliable phylogenetic infor-
mation, in our case in the form of haplogroup (Hg)
associations of the mtDNA samples we use. We de-
velop a formal maximum likelihood inference ap-

proach, that integrates out the intra-Hg phylogenetic
uncertainty. We show that maximum likelihood pa-
rameter estimation in our model is a binomial re-
gression with complementary-log-log link function
(a Generalized Linear Model) for estimating the
site-specific mutation rates and the size parameters
for each Hg-specific phylogenetic tree. The main ad-
vantage of our approach is that it allows us to practi-
cally apply our method to large datasets, and elimi-
nate the difficulties resulting from uncertainty about
the correct phylogeny. In our case, we apply it to
a dataset of 16609 samples, collected in the Geno-
graphic project (Behar et al., 2007), and classified
into Hgs relying mostly on coding region informa-
tion.

2. Materials and methods

2.1 Statistical method

Assume we observe a large number of se-
quences of a non-recombining DNA region. These
samples are all located on a phylogenetic tree re-
lating all of them. We are not given their detailed
phylogenetic relationship, but rather a haplogroup
view of that relationship. That is, the samples are di-
vided into groups that belong to the same Hg, where
each Hg can be thought of as a terminal subtree of
the full phylogenetic tree, whose internal structure
is not known. This situation is illustrated in Figure
1.

We assume:

1. That the haplogroup classification of all se-
quences is known and accurate.

2. That the sequences are of the same length and
differ only through single nucleotide polymor-
phisms (SNPs). We thus ignore insertions and
deletions in our analysis. This is not a critical
feature of our methodology, but since almost all
insertions and deletions are unique events and
not prone to homoplasy or back mutations, we
leave them out of our analysis.

3. That the SNPs in each site of the considered
DNA region are independent.

4. That there is a global molecular clock, i.e., that
for every site considered, the rate of mutations
per time unit is the same in every part of the
phylogenetic tree.

5. That every site has a fixed Poisson rate with
which the mutations occur. This assumption
is exactly correct if we assume an appropri-
ately simple substitution model, in particular
one where the set of mutation probabilities is
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FIG. 1.—(A) Schematic of the Hg view of a phylogenetic tree and (B) the full phylogenetic tree, including the internal Hg
phylogenies, which we assume we don’t observe

independent of the current nucleotide (and con-
sequently all four nucleotides are equally likely
to appear). This is true of the three simplest
substitution models commonly used:

• The Jukes-Cantor model (JC69, Jukes
and Cantor (1969)), which assumes that
all substitutions are equally likely.

• The Kimura 2-parameter model (K80,
Kimura (1980)), which allows for differ-
ent probability of transitions and transver-
sions.

• The Kimura 3-parameter model (K3ST,
Kimura (1981)), which allows for differ-
ent probability of transitions and two dif-
ferent types of transversions. For a site
with overall mutation rate λ per time
unit, the instantaneous transition matrix
for K3ST is:

A C G T
A
C
G
T




· b2λ aλ b1λ
b2λ · b1λ aλ
aλ b1λ · b2λ
b1λ aλ b2λ ·




(1)
with a + b1 + b2 = 1.

Assumptions 1–2 are critical for our analysis
and cannot be validated. Assumption 3 can be re-
laxed as long as the clock changes uniformly for all
sites in HVS-I. The methodology we develop will
allow us to do hypothesis testing to examine the va-
lidity of assumption 4. Assumption 5 is important
to make our model formally correct, but slight vio-
lations of it (e.g., in substitution models that allow
slightly different marginal probabilities for the dif-
ferent nucleotides) should not affect the practical va-
lidity of our methodology.

Given a rooted phylogenetic tree T , let t(T ) be
the total time length of all branches on the tree. Sub-
ject to our assumptions, the number of mutations on

this tree in a site i in total time t(T ) is distributed
Poisson(λi · t(T )), where λi is the rate parameter
for this site. In our case, we are not given the full
tree T but a set of K haplgroups, representing ter-
minal sub-trees T1, . . . , TK whose lengths t1, ..., tk
and internal structure are not known, with n samples
sorted into n1, . . . , nK samples in each Hg respec-
tively.

Assume first we were able to observe the num-
ber of mutations mik in each site i in each Hg k,
then the total log-likelihood of the data would be:

l (m; λ, t) =
I∑

i=1

K∑

k=1

[log(λitk)mik − λitk]−

−h(m) =
I∑

i=1

log(λi)
K∑

k=1

mik +

+
K∑

k=1

log(tk)
I∑

i=1

mik −
∑

i,k

λitk − h(m) (2)

where h(m) =
∑I,K

i=1,k=1 log(mik!) is of no con-
sequence for maximum likelihood estimation of the
parameters (λ, t). This maximum likelihood esti-
mation problem is a straight-forward Poisson regres-
sion with a (canonical) log link function. In fact, it is
easy to show that the decomposition in Eq. (2) im-
plies that maximum likelihood estimation of all λi’s
can be done by simple counting (up to multiplication
by an overall constant factor).

Given Hg-level classification only, however,
we do not observe the mik’s, but only observe the
state of site i in all nk samples (leaves) in Hg k. If
not all of these are identical, we know for certain
that mik > 1, i.e., site i has mutated at least once
somewhere on the phylogenetic tree describing our
haplgroup k samples. Without knowledge of the ac-
tual Hg-specific phylogeny we cannot make any fur-
ther conclusions on mik in this case. If all of the nk

samples have identical nucleotide in position i, we



conclude that this site has not mutated anywhere on
the Hg’s phylogenetic tree, i.e., mik = 0. This con-
clusion is not guaranteed to be correct, however we
can argue that with overwhelming probability it will
be.

To demonstrate this concept, consider a simple
phylogenetic tree like the one in Figure 2, where we
assume a mutation from red triangle to black cir-
cle has occurred on the top right branch. The shapes
at the bottom describe the states of the leaves (ob-
served samples), if no other mutations have occurred
at this site. If all the leaves of the tree were to have
the same nucleotide (all triangle or all circle) at site
i, it would require that either the mutation reverted
back from circle to triangle on a cut of the subtree
below it (such as both branches marked with ∗∗) or
the same exact mutation (triangle to circle) simulta-
neously happened on a set of branches completing a
cut of the full tree (such as the branch marked with
×). If none of these highly unlikely events (requiring
multiple “coordinated” mutations) occur, all leaves
would not have the same nucleotide at site i, given
the shown triangle to circle mutation.

We can demonstrate the low probability of
missing a mutation in our approach, by compar-
ing it to another probability, that of not observing
a mutation on a coalescent tree because it has mu-
tated back on the same link and thus is completely
unobservable for us. Assuming for simplicity that
all polymorphisms are binary, consider for exam-
ple the two links marked with ∗∗, assume they both
have length t. It is easily seen that the probabil-
ity that site i mutated and reverted on either one of
them is 2 · exp(−2λit)(λit)2/2 + O((λi · t)3). The
probability that the triangle to circle mutation re-
verted back on both of them simultaneously is simi-
larly exp(−2λit)(λit)2 + O((λi · t)4), i.e., slightly
smaller. If we do not assume both links have the
same length, then the first probability is potentially
much bigger than the second. Thus, under reason-
able assumptions, that reversion back is most likely
on binary splits, our total chance of setting mik = 0
when the true value is mik > 0, is on the same or-
der of magnitude as twice the chance that the coa-
lescent tree contains mutations that reverted back on
the same link, which are inherently unobservable.

It should be clarified that by setting mik = 0
we are not implying that the site i has never mutated
in this haplgroup k anywhere in the world, but rather
that it has not happened on the phylogenetic (coa-
lescent) tree of the nk samples we observe in our
dataset. This is the tree whose total branch length tk
is one of the parameters we will be estimating.

Thus, we are assuming that while we cannot
observe our Poisson mutation counts mik, we can
observe the binary variables bik = I{mik = 0}. It

is easy to verify that these variables are distributed
as bik ∼ Bernoulli(exp(−λi · tk)). If we now write
the partial likelihood of the observed data b only we
get:

l(b;λ, t) =
I∑

i=1

K∑

k=1

[−λitkbik + (3)

+ log(1− exp(−λitk))(1− bik)]

and maximum likelihood estimation of the param-
eters (λ, t) is still a Generalized Linear Model
(GLM) (McCullagh and Nelder, 1989), if a slightly
less standard one: a binomial regression with a com-
plementary log-log (CLL) link function, since:

log(− log(P (bik = 1))) = log(λi) + log(tk) (4)

This procedure yields maximum likelihood es-
timates of both the Hg coalescent tree lengths
t̂k, k = 1, ..., K (without information about the ac-
tual phylogeny), and the site-specific instantaneous
mutation rates λ̂i, i = 1, ..., I . However, note that
this maximum likelihood solution is defined only
up to a multiplication of all the t̂ks by a constant
and division of all the λ̂is by the same constant (the
Bernoulli probabilities in (4) would not be affected).
Thus, to complete our estimation we need to re-
solve this remaining degree of freedom, for example
through calibration of the total mutation rate

∑
i λi

to an external accepted number. Following Forster
et al. (1996) we use 1/20180 mutations per year in
the limited HVS-I (16090 to 16395) as our calibra-
tion number.

To summarize our modeling approach:

1. We are given HVS-I sequences as data, we as-
sume that these sequences are correctly classi-
fied into Hgs and that we get the full, correct
HVS-I sequence for every sample.

2. We make assumptions 1-5 above, under which
the likelihood of the Hg-site specific mutation
counts mik is Poisson (2).

3. Since we do not know the intra-Hg phylogeny
of our samples, we cannot observe mik, how-
ever we can (with overwhelming probability)
observe bik = I{mik = 0}.

4. Maximum likelihood estimation of the site-
specific mutation probabilities and Hg-specific
coalscent tree lengths is now a binomial regres-
sion with a complementary log-log (CLL) link
function.

2.1.1 Saturation and sub-sampling Since our
method relies on high-quality Hg classification, and
then only considers the binary bik’s, it can happen
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FIG. 2.—Demonstration of our reasoning, that we know whether any mutations have occurred in a specific site.

that a specific site i gives bik = 0 ∀k, i.e., it is poly-
morphic in all Hgs. This is especially likely if some
of the λi are much larger than others, and if all Hgs
contain a large number of samples. This is indeed
the case for the Genographic dataset we use below
for our experiments.

In the event that bik = 0 ∀k the rate λi is un-
estimable in our methodology. Even if bik 6= 0 for a
small number of Hgs, the estimate of λi may still
suffer from stability problems. Ideally, we would
like a balance between Hgs for which bik = 1 and
ones for which bik = 0, especially for our fastest
mutating sites.

In this situation, we propose to counter this
problem by sub-sampling the large database multi-
ple times, and generating a distribution of estimates
generated by applying our estimation approach to
sub-samples from the original larger sample. In fact,
we advocate using a boostrap-based sub-sampling
approach, known as the m out of n bootstrap (Bickel
et al., 1997), where m < n samples are sampled
with return from the database of size n. As Bickel
et al. (1997) and others discuss, this is an alterna-
tive bootstrap approach, which can lead to similar
insights to the standard bootstrap, and is superior
in certain situations when the standard (n out of n)
bootstrap is not effective for various reasons. Our
setting is different from theirs, in that the estimation
itself cannot be performed from the full datatset, not
only the bootstrap-based inference. Thus we are tak-
ing advantage of the m out of n bootstrap for both
estimation and inference.

In our approach, we empirically try different
values of m, giving rise to distributions of estima-
tors of the mutation probabilities. We evaluate them
based on their empirical spread (variance) and their
bias in estimating the true probabilities. We discuss
strategies for estimating these quantities in the next
subsection.

2.2 Statistical Inference

The goal of inference is to interpret and under-
stand the performance of our estimation procedure
and validate the underlying assumptions. Our first
inference goal here is to get an idea of the relation-
ship between our estimates and the “real” values.
The second is to test the hypothesis of site indepen-
dence underlying our method (and much of the anal-
ysis of genetic information).

2.2.1 Bias and variance estimation based on a
simulation-bootstrap hybrid A key question re-
garding our methodology is, how reliable are our
mutation probability estimates? Asymptotic theory
can be used to derive approximate confidence inter-
vals for the maximum likelihood estimates we de-
rive (see McCullagh and Nelder (1989) for details).
However, our modeling problem seems to be far
from “asymptopia” and these intervals are not re-
liable. Also, CLL-link binomial regression has in-
herent bias (McCullagh and Nelder, 1989, chap. 15)
We try, therefore, to investigate the error in our es-
timates through a combination of resampling-based
and simulation approaches.



The parametric bootstrap (Efron and Tibshi-
rani, 1994) allows us to investigate properties of
our estimators through a plug-in approach: gener-
ate multiple datasets from the model we estimated,
re-estimate the model from these datasets and in-
vestigate the consistent error (bias) and instability
(variance) of these estimators. The main problem
with application of the parametric bootstrap in our
case is the implicit assumption it makes, that our
estimated model is “close” to the true model, and
generates data with similar properties. This assump-
tion is clearly violated in our case in one respect:
we are able to estimate probabilities only for sites
in HVS-I which are polymorphic in our data (292
out of 553). However, the other 261 sites clearly do
not have probability 0 of mutating. Rather, it is the
luck of the draw which determines which portion of
the slowly-mutating sites in HVS-I are polymorphic
in our data. If we now draw a parametric bootstrap
sample, using our estimated probabilities, we expect
that many of the sites that are polymorphic in our
data would never mutate in this bootstrap sample,
and the number of polymorphic sites in every boot-
strap sample would be much smaller than the num-
ber in our original dataset.

On the other hand, we have at our disposal in-
formation about the “prior” distribution of the mu-
tation rates in HVS-I. Tamura and Nei (1993) origi-
nally showed that a Gamma prior with shape param-
eter roughly α = 0.1 is appropriate for the distribu-
tion of mutation rates in the control region of the
mtDNA (including HVS-I). Later authors, includ-
ing Excoffier and Yang (1999) and others, have sug-
gested different values as α may be more appropri-
ate for HVS-I. We re-estimate this parameter from
our Hg-level data, using a methodology in the spirit
of Tamura and Nei (1993), as follows.

As discussed above, we assume that the sites
which are non-polymorphic in all our Hgs have
never mutated. Furthermore, sites which are poly-
morphic in one Hg only can reasonably be assumed
to have mutated only once, since the fact that they
are non-polymorphic in all other Hgs is indicative of
their low mutation probability. While this assump-
tion may not be completely accurate, it is “close
enough” to obtain a rough estimate of α. So, assum-
ing we know how many sites have mutated 0, 1 and
> 1 times in our complete data, we can now estimate
α by a “method of moments” requiring that the em-
pirical distribution matches the posterior probabil-
ities for these three groups under the Negative Bi-
nomial distribution. As we show below, this method
leads us to an estimate of α = 0.25 for the shape
parameter based on our data.

For simulating our process and estimating its
variance, we can now simulate a set of “true” prob-

abilities by drawing a sample of size 553 from our
hypothesized distribution:

Gamma(α, β)

and use these to generate multiple data sets, for
which we know the correct probabilities, then ex-
amine our algorithm’s performance on these.

To generate simulated data (that is bik’s) which
is like our actual data, we also need the tk’s, i.e.,
the Hg tree sizes. For this purpose, we can take ad-
vantage of the parametric bootstrap, and use our es-
timated tk’s to generate the simulation datasets (we
could then also quantify the bias our method suffers
in estimating these quantities, although this is not
the main focus of this paper).

We can then apply our estimation methodol-
ogy to multiple samples drawn via this simulation-
bootstrap hybrid methodology and obtain estimates
of the bias inherent in this methodology for data
“like” the genetic data we have.

To summarize our bias estimation methodol-
ogy, given an estimation methodology E, and a
dataset D, it proceeds as:

1. Apply E to D to obtain estimates λ̂i, i =
1, ..., I , and t̂k, k = 1, ..., K. If E contains m
of n boosting embeded in it, apply it to multiple
bootstrap samples according to this methodol-
ogy.

2. Draw a sample of “true” probabilities pi, i =
1...I from Γ(α, β).

3. Repeat r times:

(a) Create a new dataset D∗ by drawing
bik ∀i, k using our simulation-bootstrap
hybrid and Eq. (4).

(b) Apply our methodology E to D∗ to ob-
tain estimates λ∗i , i = 1...I .

4. Calculate empirically the bias of these esti-
mates compared to the (known) pi.

5. If E contains m of n bootstrap sampling, use
bootstrap variance estimates. If not, use the
simulation-bootstrap hybrid repeated samples
to estimate the variance.

6. Evaluate the overall relationship between pi

and bias and variance, to generate a bias cor-
rection that is a function of the magnitude of
pi.

2.2.2 Hypothesis testing about site independence
A fundamental question about our methodology and
many other methods in phylogenetics is, to what ex-
tent are the molecular clock and site independence



assumptions we make realistic? In our maximum
likelihood framework, we can actually test the site
independence assumption statistically, against the
alternative that mutation probabilities in one site
may depend on the nucleotide value in another site
(or multiple sites, potentially). Unfortunately, we
cannot similarly test the lineage independence hy-
pothesis, since change in the rate of the mutational
clock is indistinguishably confounded with the tree
sizes tk.

Assume we want to test whether site r af-
fects site s. Denote as before by brk, bsk the indi-
cator variables for sites r, s being non-polymorphic
in Hg k, respectively. Given a “null” hypothesis of
site independence between r, s, we can express the
“alternative” that site s is more likely to be non-
polymorphic if site r is non-polymorphic, by adding
a parameter expressing this dependence to our for-
mulation, as follows:

P (brk = 1) = exp(−λrtk) (as before)
P (bsk = 1|brk = 1) = exp(−λstk) (as before)
P (bsk = 1|brk = 0) = exp(−λsλrstk)

(potential effect of site r)

Under the null of no dependence, we have λrs =
1 and we go back to the formulation in (3), while
under the alternative we can re-write the likelihood
as:

l (b; λ, t) = (5)

=
I∑

i=1,i6=s

K∑

k=1

[−λi · tk · bik +

+ log(1− exp(−λi · tk))(1− bik)] +
+[−λsλrs

1−brk · tk · bsk +
+ log(1− exp(−λsλrs

1−brk · tk))(1− bsk)]
where the last part in Eq. (5) allows an extra pa-
rameter for the cross-effect between the two sites.
We can then test the hypothesis H0 : λrs = 1 via a
generalized likelihood ratio test with one degree of
freedom, comparing the maximum likelihood solu-
tions of (3) and (5).

When we apply this testing methodology for
all pairs of sites, we are performing a large number
of tests, and we need to take into account the issue
of multiple comparisons when evaluating the out-
come of our tests. For that purpose, we employ the
false discovery rate multiple comparisons correction
at 5%, which guarantees that the expected rate of
falsely rejected null hypotheses is at most 5% of all
rejected hypotheses, possibly less, under some types
of dependence (Benjamini and Hochberg, 1995).
This correction is slightly less conservative than the
standard Bonferroni correction (i.e., allows us to re-
ject more nulls), but similar in spirit.

The main advantage of our testing methodol-
ogy is that it aligns naturally with our modeling
approach, and specifically that it does not require
detailed phylogenetic reconstruction. It should be
noted, however, that it cannot expose every type of
non-independence, and it may have limited power
to expose others. For example, if a specific combi-
nation of nucleotide values in two sites has a strong
affinity, and hence once one site mutates into this
state the other follows closely, our method can only
identify this affinity if this phenomenon has hap-
pened in many of the Hg’s. A detailed phylogenetic
analysis could have more power to identify and char-
acterize these relationships.

2.3 Genographic mtDNA data

Each mitochondrial DNA sample submitted to
the Genographic project goes through the standard
classification process (Behar et al., 2007):

1. Sequencing of a number of coding-region
markers. The number has increased during the
project, currently is at 22.

2. Sequencing of the full extended HVS-I, de-
fined as sites 16024-16569 of the samples
aligned to revised Cambridge Reference Se-
quence (rCRS).

3. Based on 1., determine a Hg designation by
SNPs into one of 23 Hgs: L0/1, L2, L3xMN,
M, C, D, N, N1, A, I, W, X, R, R9, R0, HV, H,
V, J, T, U, K, B.

4. Based on 1. and 2., determine a haplgroup des-
ignation into one of 87 Hgs.

Table 2 of Behar et al. (2007) shows a summary
of Hg distribution for the 16609 samples used in
our analysis (the Reference database). Following as-
sumption 1 in Section 2.1, we assume that the 23-Hg
nomenclature labels are all correct. Since they are
based on coding region SNPs and the careful clas-
sification protocol discussed in Behar et al. (2007),
this assumption is likely to be true. It is less likely to
be accurate for the 87-Hg nomenclature. However,
as the 87-Hg version allows us to get much better
resolution in our analysis, we also use it with the
implicit assumption that its classification is accurate,
and compare and discuss the results from using both
nomenclatures.

Supplementary Table 4 of Behar et al. (2007)
contains all the information required to calculate the
bik values for the full dataset. We can see that some
of the sites are completely saturated for the 23-Hg
nomenclature: 16129, 16189, 16519 are polymor-
phic in all 23 Hgs and several other sites are poly-



morphic in at least 20 Hgs. Thus, to model the prob-
abilities reliably from this data we have to resort to
our sub-sampling methodology.

With the 87-Hg nomenclature, we clearly have
a lot more information about the mutation probabil-
ities in our data, but a less reliable Hg classifica-
tion. Site 16519 is polymorphic in the most Hgs: 65
of the 87. Thus, based on this data we could esti-
mate the probabilities directly without resorting to
sub-sampling. The quality of estimates will be ham-
pered by the uncertainty about the correctness of the
Hg labels.

One issue about the data which is highly rel-
evant to our analysis below is the problems in se-
quencing around the poly-cytosine (poly-C) region
created by the mutation T16189C (relative to rCRS).
This comes up in the dependence we identify be-
low between sites 16182 and 16183 in our se-
quences, which we suspect may be due to sequenc-
ing problems. Mutations in these two sites always
occur in concordance with the adjacent polymor-
phism T16189C that creates a poly-C stretch which
causes significant reading difficulties of this region
using standard sequencing procedures (Figure 3).
These difficulties relate to a technical sequencing
problem in which DNA strands that differ in the
number of cytosine repeats are assembled and thus
overlapping positions subsequent to T16189C are
impossible to be appreciated since they are affected
by the shift created by the variable number of cy-
tosines in the different DNA strands. Therefore, the
positions around the poly-C stretch are usually re-
moved from analysis (Behar et al., 2007). A differ-
ent question relates to our ability to correctly un-
derstand the number of adenosines that immediately
precedes the poly-C region (four in the rCRS). Fig-
ure 3 shows that different numbers of adenosines
are associated with the poly-C stretch. Since most
of the mutations we observe in 16182 and 16183
are transversions between adenosine and cytosine it
is possible that the poly-C stretch creates a techni-
cal problem here as well despite the unquestionable
reads we get for these positions. We successfully
used fragment length analysis techniques, similar to
those used to count the number of repeats in short
tandem repeats, to understand the real number of cy-
tosine repeats in various samples and found no clear
evidence for mistakes in the number of preceding
adenosines (Data not shown). Nevertheless, caution
mandates the questioning of the authenticity of our
results for positions 16182 and 16183 and the possi-
bility that the poly-C stretch plays a role in creating
artificial dependence.

FIG. 3.—The poly-C stretch. Position 16189 is highlighted
and five sequences are shown. A sequence identical to the rCRS
in the presented region is shown at the top. Below it, four se-
quences containing the T16189C polymorphism are arranged to
show 1-4 adenosines preceding the poly-C stretch. A typical
chromatogram of the sequence after the poly-C stretch is also
demonstrated.

3. Results

Considering the discussion above about the
various Hg nomenclatures we have at our disposal
and the sub-sampling approaches, we implemented
four different protocols to estimate mutation proba-
bilities from our data:

1. Sub-sampling based estimates, using 100 re-
peated samples of 1000 sequences out of our
16609 total sequences and the 23-Hg nomen-
clature.

2. Sub-sampling based estimates, using 100 re-
peated samples of 3000 sequences out of our
16609 total sequences and the 23-Hg nomen-
clature.

3. Sub-sampling based estimates, using 100 re-
peated samples of 4000 sequences out of our
16609 total sequences and the 23-Hg nomen-
clature.

4. Estimates with no sub-sampling, using the 87-
Hg nomenclature.

We then used the glm function in R to calculate the
maximum likelihood estimates of (λ, t) in (3). See
McCullagh and Nelder (1989) for discussion of the
theory of GLMs and Venables and Ripley (1994) for
discussion of the glm function in S+, which is the
predecessor of R.



Running the binomial regression, and applying
the constraint

∑
i∈{16090,...,16395} λi = 1/20180

from Forster et al. (1996) for calibration, we obtain
maximum likelihood estimates in each setting (in
the sub-sampling protocols 1–3, we actually obtain a
whole distribution of estimates in each setting). We
then apply our bias correction (which turns out to
be small, see below) and use the empirical range of
estimates from the bootstrap samples (for protocols
1–3) or the estimated variance from the simulation-
bootstrap hybrid (for protocol 4) to calculate confi-
dence intervals. Table 1 (first four columns) gives an
estimate and confidence interval of mutation rates
for the 48 quickest mutating sites in HVS-I, from
several different variants of our approach. We see
that the fastest mutating site, 16519, is estimated
to mutate once about every 200,000-500,000 years
(depending which of our estimates is used). The
10th fastest site mutates about 4 times more slowly,
and the slowest site in this list mutates about 10
times more slowly. Thus, for example, two individu-
als whose time to most recent common mtDNA an-
cestor (TMRCA) is 20000 years, have a probabil-
ity of about exp(−40000/350000) = 0.87 to have
the same nucleotide in site 16519 due to identity
by descent. The total probability that they share the
same nucleotide is of course slightly higher, since
they may also have it due to homoplasy. Figure 4
shows a graphical representation of the probability
estimates as they physically appear on HVS-I (using
the estimates from the 3000 samples version, as in
the fourth column of Table 1). We can see the rel-
atively uniform spread of the fastest mutating sites,
perhaps with a cluster around the poly-C region in
16184-16189, and the relative dearth of fast sites af-
ter 16370, and especially in the range 16400-16519.

3.1 Bias-variance analysis

To quantify how biased our derived estimates
are, we employe the bootstrap-simulation approach
we described above. The first step is to decide on a
reasonable prior distribution for the mutation prob-
abilities. To accomplish that, we find the shape pa-
rameter α that would be most consistent with the
counts of sites that have mutated 0, 1, > 1 times, as
described above. The resulting estimate is α̂ = 0.25.

We then derive a sample of mutation probabil-
ities from this prior and use the estimated tk’s from
our method (Table #) to implement the bias esti-
mation methodology. Figure 5 shows the estimated
bias as a function of the true mutation probability
for each one of our four estimation settings. The
points are means of the estimates from 100 runs of
our simulation-bootstrap algorithm, and the lines are
LOESS smoothed estimates of the bias (Cleveland
et al., 1992). These plots are shown on the log-scale,

i.e., they represent the ratio of the mutation prob-
ability to the bias in its estimates from the differ-
ent methods. We can observe that the bias has some
interesting behavior, and no clear consistent pattern
(although an obvious tendency to be negative and
more pronounced for lower mutation probabilities).
However, encouragingly we can observe that in the
region of higher mutation probabilities that is of in-
terest of us, the bias is almost invariably smaller than
0.2 in absolute value on the log scale, and therefore
no bigger than roughly 20% in our probability esti-
mates.

3.2 Hypothesis testing

For hypothesis testing of site independence, we
utilized the 87-Hg nomenclature, since the addi-
tional information in the more detailed phylogeny
is critical for our chances of identifying true de-
pendence. We applied the generalized likelihood ra-
tio (GLR) test described above to all pairs of sites
which are polymorphic in at least 5 out of the 87
Hgs — a total of 156 sites, giving us a total of
156× 155 = 24180 tests.

Effect Raw p val. Corrected
16182 ⇒ 16183 7.7× 10−12 < 0.0001
16183 ⇒ 16182 2.2× 10−9 < 0.0001
16114 ⇒ 16526 0.0000012 0.03
16212 ⇒ 16153 0.000027 0.66
16266 ⇒ 16148 0.000033 0.8
16304 ⇒ 16163 0.000039 0.95
16184 ⇒ 16335 0.000045 1
16104 ⇒ 16111 0.000053 1
16327 ⇒ 16163 0.000068 1
16526 ⇒ 16114 0.00009 1

...
...

...
Table 2 Results of generalized likelihood ratio tests for site in-

dependence. The table shows the ten most non-independent pairs
found in our data.

Table 2 contains the pairs of sites which gave
the lowest p values for the GLR test, and their FDR-
corrected p-values (Benjamini and Hochberg, 1995)
1. We observe that after the FDR correction, we are
left with only 3 cases where we can reject the site
independence hypothesis at p = 0.05. We now ana-
lyze these cases in some more detail.

The two-way relationship 16182 ⇔ 16183 is
by far the strongest non-independence effect our

1 Although we used the more powerful FDR scheme, the con-
clusions would have been the same from using the simple Bon-
ferroni correction.



1000 samples 3000 samples 4000 samples 87 Hg Bandelt et al.
Locus Est. [90% CI] Est. [90% CI] Est. [90% CI] Est. [90% CI] Est. [90% CI]
16051 0.54 [0.33-0.85] 0.5 [0.30-0.82] 0.54 [0.35-0.84] 0.48 [0.34-0.69] 0.67 [0.31-1.3]
16086 0.35 [0.12-0.7] 0.49 [0.25-0.8] 0.55 [0.31-0.87] 0.7 [0.51-0.98] 0.29 [0.078-0.74]
16092 0.56 [0.32-0.96] 0.57 [0.34-0.88] 0.54 [0.35-0.88] 0.48 [0.34-0.68] 0.57 [0.25-1.1]
16093 1.6 [0.91-2.5] 1.7 [1.1-2.3] 1.8 [1.0-3.2] 2.7 [2.0-3.7] 3.2 [2.3-4.3]
16111 0.64 [0.37-1.0] 0.58 [0.37-0.86] 0.64 [0.37-1.1] 0.62 [0.44-0.86] 0.71 [0.35-1.3]
16126 0.52 [0.28-1] 0.68 [0.45-1] 0.66 [0.44-0.9] 0.47 [0.33-0.66] 0.43 [0.16-0.94]
16129 1.9 [1.1-2.8] 1.8 [1.2-3] 1.7 [1.2-2.9] 1.2 [0.88-1.6] 1.8 [1.1-2.6]
16145 0.56 [0.31-1.2] 0.61 [0.39-0.94] 0.64 [0.44-0.95] 0.63 [0.45-0.88] 0.67 [0.31-1.3]
16148 0.34 [0.19-0.56] 0.32 [0.21-0.47] 0.3 [0.20-0.45] 0.31 [0.21-0.46] 0.38 [0.13-0.87]
16172 1.8 [1.2-2.8] 1.6 [1.1-2.6] 1.5 [0.93-2.3] 1.1 [0.83-1.5] 0.86 [0.45-1.5]
16182 0.64 [0.36-1.1] 0.68 [0.39-0.98] 0.64 [0.44-0.89] 0.59 [0.42-0.82] 0.01 [0.005-0.45]
16183 1.8 [1.1-3] 1.9 [1.2-2.9] 1.8 [1.3-2.4] 1.1 [0.82-1.5] 0 [0-0.29]
16184 0.21 [0.06-0.49] 0.32 [0.17-0.58] 0.35 [0.21-0.56] 0.47 [0.33-0.67] 0.01 [0.005-0.45]
16189 2.5 [1.6-3.7] 2.4 [1.7-3.4] 2.2 [1.3-3.8] 2.4 [1.8-3.3] 2.2 [1.5-3.1]
16192 1.1 [0.6-1.7] 0.94 [0.6-1.4] 0.88 [0.63-1.3] 0.92 [0.67-1.3] 1.4 [0.89-2.2]
16209 0.41 [0.21-0.68] 0.43 [0.26-0.68] 0.46 [0.28-0.73] 0.42 [0.29-0.6] 0.43 [0.16-0.94]
16213 0.26 [0.11-0.57] 0.32 [0.18-0.55] 0.34 [0.2-0.55] 0.24 [0.16-0.37] 0.52 [0.22-1.1]
16218 0.28 [0.12-0.54] 0.35 [0.19-0.53] 0.36 [0.23-0.52] 0.4 [0.28-0.58] 0 [0-0.29]
16223 0.46 [0.18-0.91] 0.57 [0.34-0.93] 0.64 [0.38-0.98] 0.57 [0.41-0.8] 0.86 [0.45-1.5]
16234 0.52 [0.21-0.95] 0.68 [0.42-1.2] 0.68 [0.41-1.1] 0.64 [0.46-0.9] 0.43 [0.16-0.94]
16239 0.36 [0.20-0.6] 0.35 [0.21-0.55] 0.32 [0.21-0.48] 0.37 [0.26-0.54] 0.19 [0.03-0.6]
16249 0.5 [0.25-0.81] 0.54 [0.31-0.88] 0.54 [0.36-0.8] 0.43 [0.3-0.61] 0.38 [0.13-0.87]
16256 0.54 [0.32-1] 0.64 [0.41-1.0] 0.62 [0.4-1.0] 0.77 [0.56-1.1] 0.86 [0.45-1.5]
16260 0.21 [0.06-0.48] 0.28 [0.15-0.43] 0.26 [0.16-0.44] 0.39 [0.27-0.57] 0.19 [0.03-0.6]
16261 0.65 [0.33-1.1] 0.64 [0.42-1.0] 0.6 [0.41-0.86] 0.51 [0.36-0.73] 1.0 [0.59-1.7]
16265 0.45 [0.22-0.83] 0.44 [0.28-0.64] 0.44 [0.31-0.64] 0.49 [0.35-0.7] 0.48 [0.19-1]
16266 0.34 [0.13-0.67] 0.5 [0.25-0.85] 0.5 [0.30-0.86] 0.64 [0.46-0.89] 0.38 [0.13-0.87]
16270 0.48 [0.31-0.7] 0.32 [0.22-0.5] 0.29 [0.19-0.43] 0.2 [0.13-0.32] 0.24 [0.06-0.67]
16274 0.7 [0.39-1.2] 0.81 [0.47-1.3] 0.81 [0.56-1.1] 1.2 [0.9-1.7] 0.76 [0.38-1.4]
16278 1.1 [0.7-1.7] 0.93 [0.55-1.5] 0.86 [0.6-1.2] 0.93 [0.67-1.3] 1.1 [0.66-1.9]
16290 0.17 [0.05-0.42] 0.3 [0.13-0.52] 0.31 [0.17-0.52] 0.36 [0.25-0.53] 0.38 [0.13-0.87]
16291 0.65 [0.38-1.1] 0.66 [0.42-0.98] 0.68 [0.45-0.95] 0.71 [0.51-0.99] 1.0 [0.59-1.7]
16292 0.42 [0.22-0.8] 0.43 [0.25-0.69] 0.40 [0.25-0.62] 0.41 [0.28-0.58] 0.67 [0.31-1.3]
16293 0.31 [0.18-0.59] 0.31 [0.19-0.55] 0.29 [0.16-0.46] 0.37 [0.26-0.54] 0.76 [0.38-1.4]
16294 0.74 [0.44-1.1] 0.72 [0.42-1.0] 0.75 [0.44-1.1] 0.62 [0.44-0.86] 0.29 [0.08-0.74]
16295 0.32 [0.13-0.57] 0.36 [0.23-0.58] 0.33 [0.21-0.52] 0.3 [0.2-0.45] 0.48 [0.19-1]
16298 0.41 [0.23-0.7] 0.36 [0.23-0.57] 0.32 [0.22-0.47] 0.22 [0.14-0.34] 0.57 [0.25-1.1]
16304 0.49 [0.31-0.79] 0.4 [0.26-0.68] 0.4 [0.27-0.59] 0.36 [0.25-0.52] 0.57 [0.25-1.1]
16311 2.3 [1.5-3.5] 2.4 [1.6-3.9] 2.6 [1.6-5.8] 2.6 [1.9-3.5] 2.8 [2-3.8]
16319 0.8 [0.4-1.6] 0.81 [0.51-1.3] 0.82 [0.54-1.3] 0.56 [0.4-0.79] 0.48 [0.19-1]
16320 0.53 [0.29-0.86] 0.43 [0.3-0.64] 0.40 [0.27-0.6] 0.37 [0.25-0.54] 0.8 [0.41-1.4]
16325 0.66 [0.28-1.1] 0.65 [0.43-0.94] 0.6 [0.38-0.82] 0.55 [0.39-0.78] 0.33 [0.10-0.8]
16355 0.41 [0.19-0.73] 0.45 [0.27-0.75] 0.46 [0.25-0.77] 0.52 [0.37-0.73] 0.38 [0.13-0.87]
16362 2.4 [1.4-4.1] 2.4 [1.7-3.1] 2.2 [1.6-3.0] 2.2 [1.6-3] 1.8 [1.2-2.7]
16390 0.49 [0.25-0.87] 0.54 [0.33-0.9] 0.52 [0.33-0.76] 0.59 [0.42-0.83]
16399 0.38 [0.20-0.69] 0.39 [0.24-0.57] 0.41 [0.25-0.64] 0.49 [0.35-0.7]
16519 3.6 [2.4-6.1] 2.9 [1.9-4.9] 3.0 [1.7-4.7] 4.4 [3.1-6.2]
16527 0.31 [0.11-0.62] 0.36 [0.21-0.55] 0.32 [0.24-0.47] 0.38 [0.27-0.56]
Table 1 Mutation rate estimates (in mutations per million years) and 90% confidence intervals for the fastest sites in HVS-I from

some versions of our method and Bandelt et al. (2006)
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FIG. 4.—Graphical representation of mutation rates along HVS-I

methodology identifies in our sequences. As we dis-
cussed above, it is unclear to what extent sequencing
ambiguity persists in these position as a result of its
proximity to the poly-C region. However, since most
of the mutations we observe in these two sites are
between A ⇔ C, i.e., transversions, it seems possi-
ble that the poly-C sequence plays a role in creating
artificial dependence.

The remaining significant effect is the pair
16114 ⇒ 16526. Examining our raw sequences,
this significant Hg-level relationship does not seem
to follow from easily detectable sequence-level re-
lationships, i.e., we do not observe a consistent ten-
dency for mutations in site 16526 and 16114 to co-
appear. We therefore lean towards attributing this
discovery to chance and not to a real dependence.

So while our hypothesis testing framework did
identify three significant non independence relation-
ships in our data, further analysis of these suggests
that uncertainty about sequencing issues persists for
two of them, while the third is probably due to pure
chance.

Our results are encouraging in that they support
the validity of site-independence assumptions in an-
alyzing mtDNA HVS-I data. Any dependence that
exists is not strong enough to discover with our test-
ing methodology, using our very large database and
most detailed (87-Hg) phylogenetic protocol.

4. Discussion

The mutation dynamics of the human genome
in general and mtDNA in particular have experience
a surge of interest in recent years (Torroni et al.,
2006). Many papers deal with the real or apparent
“slow-down” effect in the molecular clock for older
time periods (e.g., Ho et al. (2005)). Since we share
Bandelt et al. (2006)’s opinion that there is no con-
vincing evidence for a molecular clock slow-down
rather than saturation causing these apparent effects,
we view this issue as unrelated to our analysis in this
paper.

4.1 The advantage of not relying on detailed phy-
logeny

The previous approaches for estimating indi-
vidual mutation probabilities in HVS-I we men-
tioned above were all based on a reconstruction of
the full phylogenetic tree through a maximum like-
lihood approach (Excoffier and Yang, 1999), quartet
puzzling (Meyer and von Haeseler, 2003) or maxi-
mum parsimony (Bandelt et al., 2006).

In our case, if we were able to obtain a full
phylogeny (like in part B of Figure 1), we would
be able to observe the actual mik values (at least
up to uncertainty about repeated mutations on tree
branches), use equation (2) for modeling, and most
likely get better quality results than our modeling
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based on equation (3). However, the fundamental
idea behind our approach, is that reliable Hg clas-
sification on a tree whose general structure is known
(such as the human mtDNA tree) is a much sim-
pler task than identifying the complete phylogeny
of a large set of samples. Building detailed phylo-
genies for large samples presents significant com-
putational and, more importantly, statistical difficul-
ties. The resulting phylogenies may be highly under-
determined and uncertain (Felsenstein, 2003). Use
of maximum likelihood methodology like Excoffier
and Yang (1999) would also require parametric as-
sumptions about the mutation rates.

For example, the data we use here is com-
prised of 16609 HVS-I samples of mtDNA. The Hg
classification is primarily based on a set of coding-
region SNPs, and is therefore very reliable. On the
other hand, relying on HVS-I to build detailed, reli-
able phylogenies within Hgs, with hundreds, or even
thousands of samples per Hg, is an overwhelming
task.

4.2 Comparison to previous estimates

We briefly compare our estimates to those from
Bandelt et al. (2006), which are most comparable to
ours in terms of the large amount of data used (873
samples in their case, 16609 in our) and largely sub-
sume the previous efforts. Since they used the lim-
ited definition of HVS-I as 16051-16365, we con-
centrate on the region that is common to our study
and theirs. As can be seen in Table 1, the estimates
are similar in spirit. In particular, since the explicit
estimates given by Bandelt et al. (2006) are based
on simple counting, they have a Poisson distribution
under our assumptions. We can thus use standard
Poisson inference methodology to build confidence
intervals for them (Johnson and Kotz, 1969), which
we do in Table 1. We also normalize their estimates
to be on the same scale as ours, by constraining their
sum to be the same as the sum of our estimates for
the same range (16051-16365). We observe that the
confidence intervals from their estimates are slightly
smaller than ours for the fastest sites, but get much
larger than ours as the rates decrease. For example, if
we consider the first four rows in Table 1, we see that
in rows 1–3, where the rates are relatively small, the
confidence intervals from all variants of our method-
ology are smaller than those based on Bandelt et al.
(2006). In row 4, which corresponds to 16093, one
of the fastest sites in HVS-I (and coincidentally, one
of the sites where the rate estimate of Bandelt et al.
(2006) most disagrees with ours), the confidence in-
terval based on Bandelt et al. (2006) is smaller than
those our methods generate. We can infer that our
approach, which uses less phylogenetic information
but a much larger number of samples overall, has

advantages for estimating fast — but not the fastest
— sites compared to Bandelt et al. (2006). Qualita-
tively, our estimates and theirs seem to agree well,
and the confidence intervals almost invariably over-
lap. A graphical representation of the confidence in-
terval relationships in five randomly selected sites
can be seen in Figure 6.

4.3 Potential uses of our estimates

Reliable mutation rate estimates are clearly im-
portant for several widely accepted reasons, for ex-
ample:

• Since the mutation dynamics of the genome are
a critical component of evolution, the availabil-
ity of good methodology for estimating muta-
tion rates is part of the critical infrastructure
needed to study evolution. Of particular inter-
est in this context might be our investigation of
the site-independence assumption.

• Understanding the function of various regions
in the genome and the mutual influence be-
tween different regions, which may be caused
either by a functional relation or a physical
or chemical one, is one of the key challenges
of the field of Genomics, and indeed one of
the most important scientific questions of our
time (The International HapMap Consortium,
2005; Hardison, 2003). Creating a better un-
derstanding of the mutation mechanisms and
potential dependencies in those may be an im-
portant step in this process, as it may help sep-
arate non-genic areas which have function (and
are therefore preserved) from ones that do not,
and discover the relationships between regions
within our genome. For example, the relatively
paucity of polymorphisms in the region 16400-
16500 observed in Figure 4 might suggest a
functional role that is not fully understood yet.

• Mutation rates can be used to improve phy-
logeny estimation algorithms and sequence
quality checking (Bandelt et al., 2002). It
should be clarified, however, that these rates
are not very useful for time estimation on
known phylogenies. As Rosset (2007) has
shown, under a simple substitution model like
the one we assume here, the individual rates
are of no consequence for time estimation, only
their sum. This is a direct consequence of the
fact that the sum of independent Poisson ran-
dom variables is still Poisson distributed. Un-
der more complex models, the individual rates
may have a minor effect on time estimates.

We have also recently used our estimates
reported here to improve the accuracy of the
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mtDNA Hg classification protocol in the Geno-
graphic project Behar et al. (2007).

An interesting by-product of our mutation
probability estimation methodology is the estimates
we derive of tk, the total length of the coalescent
tree of the samples we have in each Hg (it should
be reiterated that this is not the TMRCA of the Hg,
but the sum of the lengths of all branches in the co-
alescent tree). These can be used for inference on
the age and demographic history of the Hg’s. Table
3 gives some estimates of tk, derived from our cal-
culations based on the 87-Hg protocol. Detailed dis-
cussion of these results is beyond the scope of this
paper, but we can clearly see the difference between
Hg M* (255 samples, estimate of tk is about 6 mil-
lion years) and Hg V (471 samples, estimate of tk
is only 1.7 million years), implying that our samples
from M* are much more diverse than those from V,
a difference that demonstrates the older age of the
polyphyletic Hg M* and its more ancient expansion.

4.4 Extensions of the methodology

In this paper we have discussed and demon-
strated the application of our methodology to sin-
gle nucleotide polymorphisms in the mtDNA HVS-
I. This is a natural application because these sites
are highly polymorphic, large amounts of data are
available, and Hg-classification is relatively easy to

Hg # samples Total tree length
A 361 4628667
B 301 5624497
C 229 3089925
D 147 2692974
H 6232 36186219

M* 255 5878315
V 471 1726071

Table 3 The value of tk (coalescent tree size) for a subset of
haplgroups in our data. The full list is available in Supplementary
Table 1

obtain. The natural question is, what other domains
would comply with these same conditions?

An interesting application may be to short
tandem polymorphisms on the Y chromosome (Y-
STRs), which comply with all three conditions. The
mutation probabilities (and more generally, mech-
anisms) of these patterns have been under intense
study for several years, but progress is difficult to
make, unless some highly non-realistic assumptions
are to be made (for more details, see for exam-
ple Zhivotovsky (2001); Calabrese and Sainudiin.
(2004)). Our methodology would be directly appli-
cable to Y-STR if we could assume that the muta-
tion probability of each Y-STR does not depend on



its state (repeat count). In that case, our approach
can be directly applied to calculate this probabil-
ity. Some length-dependence can even be accommo-
dated within our method by including an indepen-
dent variable for length, but the exact details of how
this can be done are a topic for further research.
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