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Abstract

Recombination is one of the main forces shaping genome diversity, but the information it generates is often overlooked. A
recombination event creates a junction between two parental sequences that may be transmitted to the subsequent
generations. Just like mutations, these junctions carry evidence of the shared past of the sequences. We present the IRiS
algorithm, which detects past recombination events from extant sequences and specifies the place of each recombination
and which are the recombinants sequences. We have validated and calibrated IRiS for the human genome using coalescent
simulations replicating standard human demographic history and a variable recombination rate model, and we have fine-
tuned IRiS parameters to simultaneously optimize for false discovery rate, sensitivity, and accuracy in placing the
recombination events in the sequence. Newer recombinations overwrite traces of past ones and our results indicate more
recent recombinations are detected by IRiS with greater sensitivity. IRiS analysis of the MS32 region, previously studied
using sperm typing, showed good concordance with estimated recombination rates. We also applied IRiS to haplotypes for
18 X-chromosome regions in HapMap Phase 3 populations. Recombination events detected for each individual were
recoded as binary allelic states and combined into recotypes. Principal component analysis and multidimensional scaling
based on recotypes reproduced the relationships between the eleven HapMap Phase III populations that can be expected
from known human population history, thus further validating IRiS. We believe that our new method will contribute to the
study of the distribution of recombination events across the genomes and, for the first time, it will allow the use of
recombination as genetic marker to study human genetic variation.
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Introduction

Recombination has been lately the focus of much attention.

Specifically, much effort has concentrated in trying to understand

the extensive variation of the recombination process seen in

humans and to unravel the basic mechanisms underlying this

variation [1–4]. Understanding recombination is an essential step

in the path to understanding the structure of the genome, and the

strategies needed for searching specific genome regions related to

complex traits and diseases. These strategies mostly depend on

exploiting linkage disequilibrium; that is, the correlation between

markers along the sequence.

In the present study, we have developed a method that allows

studying recombination from a new perspective: using the

presence or absence of the trace of a particular recombination

event in a specific sequence as a genetic marker. Actually, this idea

was first proposed by Sir Ronald A. Fisher [5] more than fifty

years ago. He introduced the concept of junction [6], and stressed

that the breakpoint created by recombination while putting

together sequences with different phylogenetic histories carries a

signal of a shared history for the descendant sequences. Once

created, a junction will be inherited just like a point mutation, and

thus can be used as a genetic marker. Moreover, in the same way

that several nucleotide states in a chromosome segment configure

a haplotype, it is possible to define that several junctions (i.e., the

presence of any set of possible recombinations) constitute a recotype.

Many different methods have been developed to detect

recombination; they are implemented in a number of computer

programs listed at http://www.bioinf.manchester.ac.uk/recombi-

nation/ and reviewed by [7]. Most of the available methods that

tackle presence or absence of recombination, however, are either

aimed at placing possible breakpoints or at detecting single

recombinant sequences, rather than at an exhaustive search for

past recombination events. Moreover, most of them are rather

computer-intensive and cannot perform the analysis of a large

number of sequences and SNPs. On the other hand, methods

implemented in programs such as PHASE [8,9] and LDhat

[10,11] infer population recombination rates; those, however, do
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not detect specific recombinations or specify which are the

sequences carrying the information of the recombination events.

We have developed a method that is specifically aimed at

detecting past recombination events from a set of extant human

haplotypes and that is able to tell which are the sequences

carrying the information of these events. The method called IRiS

(Identifying Recombination in Sequences) performs an extensive

screening for recombination within a large amount of markers

and sequences in short computing time. IRiS is based on a

combinatoric algorithm [12]; details on the efficacy can be found

in Parida et. al. [13]. Roughly speaking, the method uses the

patterns created by the polymorphic positions in the extant DNA

sequences to infer recombinant sequences and to locate the

breakpoint. For each run of the algorithm, the output is a set of

pattern-based networks, each of which represents a portion of

the region analyzed. In those networks, recombination events are

represented as nodes having two parental nodes, and the

descendant sequences of the recombinant nodes are the

recombinants. The method is based on aggregating several runs

of the algorithm using multiple sliding windows of different sizes.

Adding up the information on the successive runs, we obtain, for

each recombination event, a distribution of detections in specific

sequences along the SNPs. The highest point of each distribution

is the estimated breakpoint location and the sequences carrying

the information of that event are the recombinants. Each initial

sequence will have then signals of a set of past recombinations

(junctions) and the string representing the presence or absence of

all possible junctions are the recotypes. The final output then will

be a set of recotypes, one for each initial sequence, and a set of

estimated breakpoint locations, one for each recombination

event inferred; in a single position, more than one recombination

may be retrieved depending on the identity of the parental

sequences.

In this paper, we calibrate and validate our method using

extensive simulations, which will both give us a proxy for the

efficiency of our method and also help us to understand which

recombinations are preferentially detected. The simulations used

incorporate a model that mimics human demography and variable

recombination rates including the presence of hotspots, allowing

us to evaluate the performance of IRiS within these regions.

Moreover, we compare its performance to known cases of

recombination observed by sperm typing or estimated by linkage

disequilibrium based methods. Finally, we apply IRiS to

reconstruct the recombination history of several gene-free regions

on the X chromosome from the HapMap3 dataset [14] to analyze

the relationships among those populations using for the first time

recombination as a genetic marker.

The applications of the method can be extended to other fields

such as basic genetics, recombination dynamics, and the analysis

of structure of the genome. IRiS provides in fact a novel tool to

understand the past of recombinant genomes.

Results

Description of the method
IRiS is based on the algorithm described in [12]. Basically, it

uses patterns of SNPs of size n (grain size) in order to construct a

set of consecutive pattern-based networks along the sequence

(Figure 1). First, the patterns are recoded into numbers (Figure 1A

and 1B), then a set of consecutive pattern-based trees are

constructed (Figure 1C) and finally, the information of consecutive

trees is merged to construct pattern-based networks (Figure 1D). In

those networks, recombination events are represented by nodes

having two (rather than one) parental nodes and all subsequent

descendants of such biparental nodes are sequences that carry the

signal of that recombination event. For each network and for each

detected recombination event, the information about which

sequences are the recombinants and the starting and ending

position of the network is saved (Figure 1E).

Since this algorithm divides the haplotypes into SNP patterns

of size n and the capacity to detect recombination is higher close

to the boundaries of a pattern, a sliding window approach is used.

Therefore, the algorithm has to be run n times and the size of the

first column will vary from 1 to n across runs. A list of the

recombinant sequences and the intervals in which they have been

detected is saved. Note that particular recombination events will

potentially be detected in different runs of the algorithm and so

the same set of recombinants would have different overlapping

intervals in which these recombinations have been detected.

Adding up the information on the successive intervals, we obtain

a distribution representing the number of times a specific

recombination has been detected along the sequence (Figure 2A

and B). The distribution given by the multiple runs of the sliding

window not only helps to narrow the location of the breakpoint,

but also defines the certainty of the detection. This allows setting

up a threshold on the number of times a particular event had to

be detected to be considered a true recombination. The interval

of the distribution above the threshold was defined as the

threshold interval and the highest point of the distribution is

where the breakpoint position is inferred. In case the highest

point was a plateau, the inferred breakpoint position would be

located in the middle (Figure 2A). The final output of the

algorithm is a set of strings, one for each initial sequence, in

which the presence or absence of particular recombination events

are represented as ones and zeros: those strings are called the

recotypes (Figure 2C).

Finally, using the same approach, we can potentially aggregate

detections of multiple runs performed with different grain sizes

and also we can run the algorithm in both forward and reverse

directions. This aggregation improved significantly the perfor-

mance of the method (see next section) by increasing the sensitivity

and reducing the false discovery rate. Moreover, it allowed a much

more precise inference of the breakpoint position since maximum

intervals become much narrower (Figure 3).

Author Summary

Recombination brings together DNA sequences that can
be very distantly related, and, thus, quite different from
each other. This is often cited as a main hurdle for using
recombining regions (that is, most of the genome) to
reconstruct sequence phylogeny. We have turned this
argument around: chromosomes carrying a similar change
in sequence pattern are likely to be descendants of the
same recombination event, and thus, related. We have
devised an algorithm that detects such changes in
sequence patterns and identifies the descendants of a
recombination event. After some fine-tuning, we have
applied it to sequence data in several human populations
and have found that recombination events recapitulate
the history of these populations. This opens the possibility
of adding recombination to the current allele-based
analysis of population structure and history. Our method
also provides a tool for the genomic analysis of
recombination, both because it pinpoints recombination
events rather than just estimating recombination rates,
and because, being biased towards more recent events, it
can offer a glimpse of the fast evolution of recombination.

A New Method to Reconstruct Recombination Events
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Figure 1. Scheme of the recombination detection process for one run of the algorithm. (A) Input dataset of 10 sequences and 83 SNPs.
Colors on sequences represent similar patterns of SNPs, and a change of color along a sequence represents the signal of past recombination events.
(B) Recoded matrix. The patterns of SNPs within a column of grain size n (10 SNPs in this example) have been recoded into numbers. Those sequences
having the same pattern within a column will be assigned the same number. Between columns, numbers represent completely different patterns.

A New Method to Reconstruct Recombination Events

PLoS Computational Biology | www.ploscompbiol.org 3 November 2010 | Volume 6 | Issue 11 | e1001010



Calibration of the method
We sought the best parameter set for IRiS in human sequences

by calibrating the program using sequences produced by the

coalescent simulator COSI [15]. COSI implements a demograph-

ic scenario and a variable recombination rate model that generates

sequences that show linkage disequilibrium patterns similar to

those found in different human populations (African, African

American, European and Asian). Since the location of each

simulated recombination event was known, we could measure

IRiS performance in terms of false discovery rate, sensitivity, and

accuracy in placing the recombination event. Since we wanted to

simulate the type of data that are normally available in human

databases, we first ascertained the tag SNPs produced by COSI

and then applied IRiS.

For each parameter set false discovery rate, sensitivity and

accuracy of placement (defined as the empirical 90th percentile of

the distribution of the distances between actual and inferred

recombination location, in terms of number of SNPs) were

averaged over 100 COSI simulations. We first evaluated the

impact of varying grain size (5, 10, 15, 20, and 30) and threshold

defined as the percentage of algorithm runs in which a particular

recombination event has to be detected to be considered as true.

Next, we assessed the improvement in results gained by running

the algorithm in both forward and reverse directions (Figure S1).

Results showed that both grain size and the threshold affect the

false discovery rate. It decreases with increasing grain size, and

also varies with threshold, reaching the lowest at thresholds of 60%

(Figure S1A). Sensitivity results were basically dominated by

threshold: increasing the threshold decreased sensitivity. Interme-

diate grain sizes (10, 15 and 20) performed better in detecting

recombination (Figure S1B). Accuracy of placement was domi-

nated by grain size; the higher the grain size the lower the

accuracy. Moreover, by running the algorithm in both forward

and reverse directions the accuracy of placement was improved

(Figure S1C).

Since grain size provides a tradeoff between false discovery rate

and accuracy of placement, we evaluated combinations of different

grain sizes in order to obtain a method that combined an

acceptable false discovery rate with high accuracy. For all the

methods, we ran the algorithm in both forward and reverse

directions (Figure S2). In order to quantify the performance of

different methods, we calculated the z-score of the three

parameters under evaluation (false discovery rate, sensitivity and

accuracy) and added them up to an aggregate z-score. The false

discovery rate was given double the weight of sensitivity and

accuracy (Figure 4).

The optimal method combined runs with grain sizes 20, 10 and

5 with a threshold of 42. However, other methods had only slightly

lower aggregate z-scores. With the optimal method, false discovery

rate was 5.79% (below 10% in 90% of the simulations) and

sensitivity was 21.15%. The median distance to the breakpoint was

1.59 SNPs: most of the inferred breakpoint locations are not more

than 2 SNPs away from their true position.

Further evaluation of the optimal method
In order to provide a more robust validation and avoid

overfitting, we performed 1000 coalescent simulations and

estimated false discovery rate, sensitivity and accuracy for the

optimal method (Table S1). We also tested the robustness of the

optimal method to the SNP ascertainment scheme and SNP

density by running several simulations varying the SNP selection

process. In all cases, we removed either SNPs with MAF lower

than 0.1 or else lower than 0.01 (Table S1); then we either selected

SNPs at a certain density as homogeneously spaced along the

sequence as possible (all SNPs, 1SNP/1Kb, 1SNPs/2Kb, 1 SNP/

5Kb) or we selected tag SNPs with two different methods (pairwise

and aggressive; see methods for details). Results are robust to SNP

ascertainment and varying SNP density although there is room for

improvement especially when SNP density is very high or else,

when the SNPs selected include low frequency variants. One of

IRiS parameters called mergepats is designed to make the

program more robust to events such as recurrent mutation or

genotyping errors. Evaluation of the method when the parameter

mergepats is active was also performed and results show that the

performance of IRiS does not suffer when mergepats is activated

(Table S1).

Since each recombination event is defined by a set of

descendant sequences and an interval, there is no straightforward

definition of true negatives and that is why only false discovery rate

and sensitivity were evaluated. In order to estimate the

performance of the method in the absence of recombination, we

performed 100 blank COSI simulations, with no recombination.

The mean number of recombinations detected was less than one

per simulation (0.84) and the median turned out to be zero.

Finally we assessed whether some matches between COSI

recombinations and IRiS calls were chance events by scoring 100

IRiS outputs against 100 random COSI outputs (Figure S3). The

median false discovery rate was 85% and the sensitivity 4%.

Accuracy decreased greatly, as the median distance to the

breakpoint was 6 SNPs (up from less than 2 SNPs).

Age of the recombination events detected
We assessed which was the distribution of the age of the

recombination events detected by IRiS to estimate the time-frame

of the events that our method was able to detect. From all

recombinations detected in 500 different simulations, 90% of them

occurred between present and 3,205 generations ago. Moreover,

the median age of the recombination events detected per

simulation was 663 generations (around 13,000 years).

We also studied the effect of the age of the recombination events

on false discovery rate and sensitivity. When looking across

parameter sets, the methods with lowest false discovery rates

tended to detect most recent recombination events as average

(Figure S4). It is important to highlight that evidence of older

recombinations is overwritten by newer ones and hence they leave

their trace in relatively shorter segments requiring smaller grain

size to be detected which, at the same time, tend to have a higher

Unique patterns are assigned the number zero and will not be considered. (C) Trees one, two and three, constructed based on the recoded matrix.
Going from left to right, the recoded matrix is segmented into sets of compatible [30] columns of patterns. Compatibility of columns is checked using
a variant of the four gamete test [31] for multi-allelic markers. Each segment is represented as a tree in which the leaf nodes contain the sequences
analyzed and the edges contain the patterns inherited, similar to point mutations. Recurrence is not allowed. (D) Networks 1–2 and 2–3 constructed
from consecutive trees one, two and three merged pairwise. All the information contained in the two original trees will be present in the compatible
network. Recombinant sequences are leaf nodes descending from nodes having two parents, which means that have inherited patterns from two
different nodes (similar to an Ancestral Recombination Graph). (E) Information saved for each detected recombination event: the recombinants
sequences and the starting and ending position of the network. For a more detailed description of the algorithm see [12]. In red, the recombination
event that will be further studied in Figure 2.
doi:10.1371/journal.pcbi.1001010.g001
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Figure 2. Scheme of the recombination detection process integrating 10 runs of the algorithm. The analyzed dataset is the one shown in
Figure 1. (A) Integration of the information of 10 runs regarding the recombination event of sequence 5. For each run of the algorithm, the starting
and ending position of the network in which the recombination is detected, is saved. For each run, the size of the first column varies, being 10, 1, 2,
3… up to 9 and therefore the number of runs corresponds to the grain size. At the end, for each recombination event, we have a set of intervals in
which it was detected which can be represented graphically as a distribution. The maximum interval represents the region in which the
recombination has been seen the maximum number of times. The mean point of the maximum interval is defined as the estimated breakpoint
position. The threshold indicates the number of times a recombination has to be detected to be considered as true. The intersection between the

A New Method to Reconstruct Recombination Events
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false discovery rate (Figure S1D). We also calculated the sensitivity

of IRiS along time in bins of 500 generations for 100 COSI

simulations (Figure 5) using the optimal method. Results show that

sensitivity increases with time from past to present going up to

45% for recombination events having occurred in the past 500

generations.

Influence of the number of recombination events
generated by COSI

The number of recombination events affects the performance of

IRiS, since we found that false discovery rate correlated with the

number of recombinations (r = 0.412; p,1026). A much higher

linear correlation was found for sensitivity (r = 0.734; p,1026),

which was even higher if fitted to a logarithmic curve (r = 0.925;

p,1026), meaning that IRiS reached a plateau beyond which

even if the number of recombinations generated increased, IRiS

did not detect them. Interestingly, when comparing the number of

recombinations detected by IRiS across the simulated datasets

with the mean recombination rates estimated by LDhat [16], they

were found to be significantly and linearly correlated (0.968;

p,1026). This suggests that such a high amount of recombina-

tions does not leave traces on the patterns of linkage disequilibrium

and then it is neither detectable by LDhat nor IRiS. The

saturation is only achieved (both in IRiS and LDhat) with a very

large number of recombinations, in the order of one and half

orders of magnitude higher than the average recombination rate of

the genome (data not shown); this value may only be achieved by a

very strong hotspot. Finally, the distance between the actual and

IRiS inferred breakpoint was also correlated with the number of

recombinations (r = 0.352; p,1026), meaning that the accuracy

in the placement of recombinations decreases when there are large

number of recombinations.

Correlation with inferred recombination rates by sperm
typing and LDhat

We compared IRiS performance against linkage disequilibrium

based estimates of recombination rates in a region where direct

sperm-typing rates were also available. A region of chromosome 1

near the MS32 minisatellite contains some recombination hotspots

that were both observed through sperm typing and inferred with

different statistical methods [17]. The population of European

origin (CEU) from HapMap Phase 2 was used as a surrogate for

British samples studied by [17] and population recombination rate

was inferred using LDhat [16]. The same data was analyzed by

IRiS with the optimal method. The number of recombinations

detected by IRiS closely matched both the recombination hotspots

detected by sperm typing and specially the estimated recombina-

tion rate between each pair of SNPs inferred by LDhat (Spearman

correlation coefficient r = 0.604; p,1026 for the estimated

recombination rate by LDhat) (Figure 6). Nonetheless, it is

interesting to note clear discrepancies between sperm typing

analysis and both recombination rate estimated and specific

recombinants detected by IRiS, a fact initially discussed in Jeffreys

et al (2005) [17].

Recombining real data in silico. A study on the capacity of

the optimal method to detect recent recombination events was

performed through in silico recombination simulations with real

sequences (same dataset as in the previous section). This allowed us

to assess the characteristics that a particular recombination event

should have in order to be detected by IRiS, and also to evaluate

threshold and the detection distribution defines the threshold interval in which the algorithm guarantees that the recombination event is located. (B)
Integration of the information of all detections for the 10 runs of the algorithm. Each line represents a set of sequences in which the same
recombination event has been detected; the distribution of the line shows the number of times the event has been detected along the sequence. (C)
Final output of the algorithm: breakpoint positon in the first row, the recotypes in rows and the recombination events detected in columns. The
presence of a particular recombination event in a particular sequence is represented as a 1, and absence as a 0. Note that the recotypes represent
exactly the coloring of the sequences in Figure 1 and that only recombinations that had a distribution above the threshold are represented in the
recotypes.
doi:10.1371/journal.pcbi.1001010.g002

Figure 3. Distribution of the number of detections using the
optimal method. Each line represents the distribution of detections
for particular recombination events. The dataset corresponds to one
COSI simulation. Only those recombinations reaching the threshold will
be considered as true events. The pick of each distribution will locate
the breakpoint position for each particular recombination event along
the sequence. The optimal method (grains 20, 10 and 5 forward and
reverse and a threshold of 42) creates narrower maximal intervals in the
detection distributions than when only using grain 10.
doi:10.1371/journal.pcbi.1001010.g003

Figure 4. Values of the aggregate Z scores for different
settings. Z scores were calculated over mean values for 100
simulations of false discovery rate, sensitivity and 90th percentile of
the distance between the inferred breakpoint to the true position.
Different colored lines represent different methods, the numbers on the
legend inform on the grain size used and whether they combine more
than one grain size. All methods are run using a sliding window and
forward and reverse. Different thresholds are represented along the X
axes. Threshold is defined as number of detections to be considered as
true divided by the number of runs of the algorithm.
doi:10.1371/journal.pcbi.1001010.g004

A New Method to Reconstruct Recombination Events
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IRiS when working with real data. We performed the same

analysis several times varying the process of selection of the two

parental haplotypes (Figure 7).

Results showed that IRiS performs much better in detecting

recombination events that occur between parental sequences that

differ in a certain number of SNPs and have those differences close

to the breakpoint location. If the recombinant sequence is unique,

then there is less room for confusion and IRiS performs even

better. Finally, we see that within the hotspot region, even if the

recombinant sequence is unique and the two parental sequences

are different, the sensitivity is not optimal. That could be due to

the fact that since nearly all sequences are recombinant, IRiS

detected different recombination events across runs, and many of

them did not reach the necessary threshold to be counted as true.

Actually, if all events are considered regardless of the number of

times they have been detected, the sensitivity increases to 100%

(Figure S5).

Gene conversion, recurrent mutation and genotyping

errors. Gene conversion, recurrent mutation and genotyping

errors were not modelled in the COSI simulations. We used in

silico simulations to evaluate how these factors could affect IRiS

performance. We evaluated the parameter mergepats which if

activated, patterns of SNPs that differ in one SNP position are

considered as the same (see methods for details).

We performed 12,000 in silico simulations, 1000 for each scenario,

to simulate gene conversion involving different number of SNPs and

recurrent mutation (which will behave as a putative genotyping

error as well). Using the same dataset as in the previous section (see

methods for details), we evaluated how many times each of these

events was detected as either one or two recombination events or

not detected at all (Table S2).

Results show that, first, gene conversion will not have an impact

on IRiS results since the majority of gene conversion events involve

a very small number of SNPs [4], and under this scenario, they are

ignored by IRiS. Second, we have seen that some recurrent

mutation events can be detected as recombinations. Although we

know that recurrence does not occur so frequently in the nuclear

DNA, it may have some impact on IRiS performance in regions

with high mutation rate. It is clear that activating the mergepats

parameter in all such cases will help to create more reliable analysis.

Dealing with phasing errors. Since IRiS uses haplotype

data, we evaluated its robustness to phasing errors using similar in

silico simulations as in the previous section. A phasing error is

simulated as two reciprocal recombination events occurring in the

same position in the two homolog chromosomes of an individual.

Results show that most of phasing errors will not affect IRiS

performance, either because they are ignored (57.3%) or else

Figure 5. Sensitivity of the optimal method to detect recom-
binations depending on age. Results plotted are the averaged
between 100 simulations. The black curve depicts how sensitivity of IRiS
varies with the age of the recombination events (in bins of 500
generations) and follows the left axis. The two gray curves represent the
number of recombination events generated by COSI and detected by
IRiS and follow the right axis.
doi:10.1371/journal.pcbi.1001010.g005

Figure 6. Recombination rates inferred from sperm typing, LD-
based methods and IRiS on the MS32 region. (A) Inferred
recombination rates based on sperm typing information; figure
adapted from the figures in [17] in which they calculate recombination
rates through sperm typing. (B) Recombination rate inferred by LDhat.
(C) Number of recombination events detected by IRiS using the optimal
method. Recombination rates inferred in (A) are based on a single
individual whereas recombination rates inferred at (B) and (C) are based
on the same population data. Position zero marks the location of the
minisatellite MS32.
doi:10.1371/journal.pcbi.1001010.g006

Figure 7. Sensitivity of the optimal method evaluated in silico.
The plot shows the number of times in silico recombination events
along the sequence were detected by IRiS depending on the
breakpoint location. Different colors indicate different ways to produce
the recombinant sequence, from light gray to black: ‘‘random’’ indicates
that parental haplotypes were taken at random, ‘‘1dif near bkp’’
indicates that parental sequences had to be different near the
breakpoint region (plus minus 10 SNPs), ‘‘ 2 dif near bkp’’ indicates
that parental sequences had to be different near the breakpoint regions
at both sides of the breakpoint, and ‘‘ unique’’ indicates that the
parental sequences had to be different near the breakpoint region and
the recombinant sequence had to be unique within the breakpoint
region. Below, the recombination rate estimated by LDhat is shown,
following the right axis.
doi:10.1371/journal.pcbi.1001010.g007

A New Method to Reconstruct Recombination Events
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because they can be detected as reciprocal recombinations (30.4%)

and be discarded from the output.

In order to study the impact of phasing errors further, we selected

18 regions from the X chromosome from HapMap phase 3 project

(see methods) and compared the number of recombinations

detected by IRiS using 537 male X chromosomes (in which the

phase is known) with 537 female X chromosomes. The female

chromosomes were phased independent of the male chromosomes

using two different softwares: PHASE [18,19] and fastPHASE [20].

We also performed a post-processing of the output by removing

pairs of recombination events occurring in the two homologous

chromosomes of a female in the same position (Table S3).

Results show that when sequences are phased using PHASE, no

differences in the number of recombinations can be found between

males and females (Wilcoxon test; p = 0.992 ); even when

grouping the number of recombinations detected in bins of 5 SNPs

along the sequence (Wilcoxon test; p = 0.795). Conversely, when

phasing with fastPHASE, the number of recombinations detected

in the female sample is significantly higher in females both when

calculating it per region (Wilocxon test; p,1026) and in bins of 5

SNPs (Wilcoxon test; p = 0.000292).

Regarding the post-processing in which recombinations occur-

ring in the two homolog chromosomes of the same individual are

removed, there is a difference between the three datasets. In the

male dataset (in which all recombinations that may be removed

are not phasing errors), 5.59% of the recombinations are removed.

In the female dataset phased with PHASE, 3.37% of the sequences

are removed, whereas for the fastPHASE phased dataset 9.70% of

the sequences are removed. This may be indicating that some of

the sequences that are removed in the fastPHASE dataset are

indeed phasing errors.
Using recombinations as genetic marker in human

population genetics. A search for human X-chromosome

regions harboring more than 80 SNPs and not containing

known genes, copy number variants or segmental duplications

(see Methods) yielded the 18 regions shown in Table S4. Overall,

they span slightly more than 7 Mb, and contain 2054 SNPs that

were genotyped in 537 male X chromosomes of the HapMap [14]

Phase 3 project. We selected the X chromosome in males in order

to avoid phasing errors that would mimic recent recombination

events. We run IRiS over the 18 regions independently using the

optimal method; we inferred a total of 3598 recombinations. Thus,

after running IRiS in a set of haplotypes, we obtained a set of

recotypes, each of them representing the recombination history of

each initial chromosome with the putative position of each of the

recombination events. We calculated the nucleotide diversity over

the 18 regions together, and we also calculated the recombination

diversity by doing the same process with the recotype data (Figure 8).

Because of the ascertainment bias in SNP selection in Hap Map 3,

nucleotide diversity values did not show any specific pattern at the

continental level; but recombination diversity did, having a much

higher diversity within African populations. This suggests that the

recombinational diversity measure is not affected by the SNP

ascertainment bias.

We next analyzed the geographical structure of recombination

events by means of two different statistical analyses: Principal

Component Analysis (PCA) and Multidimensional Scaling (MDS).

Results of the PCA analysis for component 1 and 2 can be seen in

Figure 9. The first component separates African from non–African

populations, with the African-Americans in an intermediate

position. The second component separates European from East

Asian populations leaving the Mexican in between them and the

South Asians closer to the Europeans. Interestingly, the second

component also separates Western Africans (Yoruba) and African-

Americans, from the Eastern Africans (Maasai and Luhya).

MDS was based on a recombination distance matrix among the

eleven populations and showed very similar results as for the PCA

(Figure S6) where the first dimension would separate between

African and non-African populations and the second one would

separate between European and East Asian. The stress in the MDS

was significantly lower than expected for a random collection of

points [21]. Finally, beyond the graphic representation of population

differentiation, we calculated the correlation between the genetic

distances based on SNP allele frequencies among the eleven

populations with the recombination distance matrix and the mean

correlation coefficient was 0.756 (p-value,1026).

The geographical structure found by these analyses is consistent

with that produced with allele frequencies in classical markers,

short tandem repeats [22], single nucleotide polymorphisms

[23,24,25] and haplotypes or CNV [25] to the point that it can

be considered a general consensus.

Figure 8. Nucleotide and recombination diversity. Values were
calculated for each of the populations based both on haplotypes and
recotypes for the 18 regions. Values of recombination diversity have
been multiplied by 100 to make them comparable.
doi:10.1371/journal.pcbi.1001010.g008

Figure 9. First and second components of the Principal
Components Analysis. Only recombinations present in at least in
two individuals were taken for the analysis. The first component
explained 18.03% of the variance and the second component 14.53%.
doi:10.1371/journal.pcbi.1001010.g009
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Discussion

We present here a novel method that is able to extensively

detect and place historical recombination events. We have

calibrated and validated it specifically for human variation

through simulations, but it could be easily adapted to other

species provided that basic models for demography and recom-

bination exist. An optimal parameter set has been defined based

on three performance criteria: false discovery rate, sensitivity, and

accuracy in placing the breakpoints. Given that different

parameters had contrasting effects (a decrease in false discovery

rate is often accompanied by a decrease in sensitivity, for instance),

a compromise was sought and the best parameter set was the one

that combined grain sizes of 20, 10 and 5 run forward and reverse

with a threshold of 42. It should be noted, though, that some

applications may require a different balance; for instance, greater

accuracy may be needed, and the parameter set can be adapted to

accommodate these different requirements.

Recombination rate varies across the genome [9,26] and the

number of actual recombinations in the sample history will affect

IRiS performance. IRiS tends to saturate with a growing number

of actual recombinations per sequence, but its behavior mimics

that of linkage disequilibrium based recombination rate estimation

algorithms such as LDhat [11]. It is possible then that a large

number of recombinations will not generate a corresponding

increase in the information that can be extracted either from

patterns or from linkage disequilibrium. This imposes a limit on

IRiS, and may be particularly restrictive in recombination

hotspots, where repeated recombinations in the same location

will erase the signal of older events, letting IRiS to recover a lower

number of events than the ones that really occurred. On the other

hand, we should also take into account the possible confounding

role of homoplasy. For two different recombination events to be

counted as one they not only have to share the breakpoint location

but they should have similar SNP patterns flanking the breakpoint.

The fact that the false discovery rate is low indicates that there are

not many cases in which IRiS considers two sequences as

descendants of the same recombination event and they are not.

We have seen that sensitivity is higher for more recent

recombination events both in those events generated in the last

500 generations (,10,000 years) in coalescent simulations, or in

those generated instantly in silico from extant human sequences.

On the contrary, older recombinations are harder to detect. Two

factors may account for this bias: older recombinations may have

been partially erased by subsequent recombination events, and

recombinations involving more divergent parental sequences are

easier to detect; those more ancient may happen among identical

sequences without leaving any footprint. While this bias implies

that recombination events happening deeper in human history

may be difficult to recover, it also provides a tool that connects

populations that diverged recently, or may even signal relatively

shallow genealogical links between individuals, and could be used

in the emerging field of genetic genealogy.

Several factors such as gene conversion, recurrent mutation,

genotyping errors, phasing errors, or SNP ascertainment may affect

the performance of IRiS and in this study we have extensively

evaluated the impact of them all. First, we have shown that gene

conversion has higher impact as more SNPs are involved in the

process. Since gene conversion typically involves very small regions

[4], the majority of gene conversion events will involve one SNP and

consequently will be ignored by IRiS. Secondly, we have seen only

very few recurrent mutation events or genotyping errors being

falsely detected as recombinations, especially if the mergepats

parameter is activated. Recurrent mutations do not occur so

frequently in the nuclear DNA, but there may be regions in which

mutation rate is higher than average and patterns similar to those

generated by recombination may appear. In those cases the

mergepats function must be activated. Third, we have shown that

according to in silico simulations, most of phasing errors will not

affect IRiS performance, either because they are ignored (57%) or

else because they can be detected as reciprocal recombinations

(30%) and be discarded of the output. It is important to highlight,

however, that if the phasing is not accurate there may be some fake

recombinations in the dataset. If this is known a priori, we suggest

the option of post-processing the detected recombination and

remove those that look like phasing errors. In any case, special care

should be taken to decide which software is used when inferring the

phase of haplotypes: we believe that datasets with high phasing

quality are needed in order to run IRiS on them. Finally we have

shown that IRiS is able to perform well under very different SNP

density scenarios and SNP ascertainment processes. It is important

to note however that the method is not optimized to analyze

resequencing data and incorporate information on rare variants.

Further studies on the optimal parameters to use in this end should

be performed. Conversely, IRiS would not be able to deal with

completely uncorrelated SNPs since it is based on the patterns of

SNPs created due to LD to identify recombination events.

When applying our method to population genetics, using a set

of regions in the X chromosome in HapMap Phase III data, we

found that the ascertainment of the SNPs present in HapMap

resulted in similar nucleotide diversities in all populations, whereas

the recombination diversity values were not affected by it. Higher

recombination diversity was found in African populations. If

nucleotide diversity were different across populations, this could be

attributed to a higher capacity of IRiS to detect recombination

within more diverse populations. However, since we have seen

that the nucleotide diversity in HapMap Phase III is similar across

populations, we can conclude that African populations contain

indeed more recombination events than the other populations, as

expected from their larger long-term effective population size. This

is a further validation of the method.

Moreover, the ASW (Afro-Americans) is the population with the

highest recombinational diversity. This could be explained by it

being an admixed population and because some of the

recombination events may be clearer since the two ancestral

sequences that recombined may come from very different

populations. It has to be stressed that this admixed population

has been included in our validation procedure and thus, we have

already taken into account the possible effects on IRiS perfor-

mance due to admixture. The possible use of IRiS to detect and

analyze past admixture deserve future attention.

Two different statistical methods that plot the relationship

between populations based on their shared recombination events

as detected by IRiS have produced results that are strikingly

similar to the a priori expectations based on what is known about

human population history. This can be taken both as a validation

of our method, and as a pilot project for the applicability of IRiS to

human population data. We believe that the use of recombination

events in conjunction with the standard methods based on SNP

and haplotype frequencies [25] will allow extracting the most

information from genetic data in the reconstruction of human

population history.

In conclusion, we have presented a method that is able to

extensively retrieve historical recombination events from a set of

extant human haplotypes and point out which are the sequences

that contain the information on those events. We also have shown

a potential application of the method in population genetics: the

use of recombination as a genetic marker that can complement
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present methods. Finally, we believe that this method will have a

whole set of applications beyond population genetics in fields such

as the study the recombination dynamics and the recombinational

differences between populations, or the study of the mechanisms

that have given rise to our recombinant genomes.

Materials and Methods

Coalescent simulations pipeline
Simulations were performed using the coalescent simulator

named COSI (Shaffner et al. 2005) with the Best-Fitting Model

parameters which simulate datasets that closely resemble human

data. We took a sequence length of 250,000 bp and a sample size

of 50 sequences per population for all populations except the

African population, for which the sample size was 60.

In the first phase of the calibration, we evaluated IRiS

performance over 100 random simulations having more than 80

SNPs. The number of simulations was then increased to 1000 in

order to establish more robust results. For each simulation, the

evaluation process was as follows:

First, the COSI best fit model was run; the information of all

recombination events created, their descendant sequences, and the

age and exact position of the breakpoint was saved.

Second, the SNP ascertainment was performed; SNPs with

MAF lower than 10% and non-tagSNPs were removed from the

sample. TagSNPs were selected using Haploview with pairwise

option (Barrett et al., 2005) and r2 .0.8.

Third, recombinations that took place between identical

parental sequences in at least one side of the breakpoint were

removed, since they are impossible to detect as recombinants and

will be not be considered further (note that those events will not be

used to compute sensitivity values).

Fourth, IRiS was run on the dataset created by COSI. Each

detected recombination is defined as a set of recombinant

sequences and a breakpoint interval defined by IRiS, (maximum

of the distribution). Detection is considered correct if there exists a

recombination event within the COSI simulation that has exactly

the same descendant sequences and it occurred within the interval

defined by IRiS. We allow IRiS to detect a subset of the

descendants, of a particular recombination event created by

COSI, if there has been a younger recombination that masks the

trace of the older one in some of the descendant sequences.

Finally, false discovery rate, sensitivity and the 90th percentile for

the distance from the inferred to the real location are computed.

All correlations performed on the results of the simulations were

calculated by means of the SPSS software (version 15.0).

Correlation with inferred recombination rates by LDhat
and sperm typing

The study of the correlation between IRiS results and hotspots

inferred from recombination events detected through sperm typing

was performed based on HapMap Phase 2 data (www.hapmap.

org). We downloaded SNP genotypes of the HapMap Phase 2

release #21 for the CEU population for the SNPs present in the

same region studied by Jeffreys et. al (2005) [17] in chromosome 1

and we obtained a total of 120 chromosomes and 365 SNPs.

Inference of the recombination rates was performed by means of

the coalescence-based algorithm implemented in the LDhat

package [10,11] using the program rhomap [16]. The parameters

used were the recommended in the user’s guide such as 1,100,000

iterations for the rjMCMC procedure, 100,000 iterations for the

burn-in. Before using Rhomap, a lookup table file was created from

a pre-computed table taken from http://www.stats.ox.ac.uk/

m̃cvean/LDhat/instructions.html which assumed a theta of 0.001

per site. Recombination rates were calculated for each pair of SNPs

as the median of five runs of rhomap. Sperm typing recombination

rate estimates were taken directly from the figures in [17].

The IRiS proportion of recombination was calculated based on

the threshold interval normalized by the length of the interval in

bp. Each recombination contributed equally to all SNPs in the

inferred breakpoint interval a value inversely proportional to the

length of the interval in bp. To check sensitivity to linkage

disequilibrium, raw IRiS detections were added up across all the

algorithm runs. Note that in this case each inferred breakpoint

interval will be the length of the network in which the

recombination was detected.

In silico simulations
In silico recombinations were created using the same region on

chromosome 1 near the MS32 minisatellite from HapMap Phase 2

used in the previous section. We selected 30 SNPs within the

central region that contained one of the defined by sperm typing

hotspots and created 100 different recombination events at each of

the SNPs locations (3000 simulations overall). Each event was

created by taking two parental sequences from the dataset at a

time, recombining them, and putting back the recombinant

sequence together with the parental sequences. A positive

detection was defined when the recombinant sequence was

detected as a unique recombinant and the predicted interval

contained the true breakpoint location.

We performed the same analysis several times varying the

process of selection of the two parental haplotypes. First, they were

chosen at random, second, they were only taken if they were

different in at least one position within the breakpoint region

(defined as a 10 SNP distance of the breakpoint), third, they were

taken if they were different in at least one position on each side of

the breakpoint within the region, and finally, we would only

consider for the analysis those events that created recombinant

sequences that was unique within the breakpoint region

In silico gene conversion simulations were created by randomly

taking two chromosomes, transmitting 1, 3, 5 or 10 SNP variants

from one chromosome to the other and adding them back to the

original dataset. Recurrent mutations were simulated by choosing

a chromosome and a SNP position at random, and changing it to

the other allele. Finally, phasing errors were created by taking two

chromosomes at random, generating a reciprocal recombination

and putting back the two chromosomes in the initial dataset.

We considered that two recombinations to be the putative product

of a phasing error if there appeared two recombination events in the

two homologs of an individual at a distance of less than 6 SNPs.

The mergepats parameter is implemented in IRiS when

defining groups of SNP patterns of size g (which in the optimal

method will be 5, 10 and 20). If mergepats is activated, patterns

that differ in one SNP will be considered as the same. This is

performed hierarchically first by taking the most frequent pattern

and merging it with all patterns that are at edit distance one of it.

Then the second most frequent pattern will be merged with all

patterns being at edit distance of one, and so on. In this way, we

avoid merging all patters of a sample into a single one.

Region selection
The whole X chromosome was screened in order to find the

optimal regions for our analysis. Regions at least 50 Kb distant

from known genes, copy number variants and segmental

duplication, and containing at least 80 SNPs genotyped in the

11 populations from the HapMap Phase 3 release #1 (www.

hapmap.org) were sought. These conditions were meant to avoid

selection, genotyping errors, and to ensure sufficient precision to
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detect recombination. A complete list of all the positions of the

genes in X chromosome was retrieved from Ensemble 37 using

BioMart (http://feb2006.archive.ensembl.org/Homo_sapiens/

martview). The coordinates of segmental duplications were

retrieved from the Segmental Duplications Database (http://

humanparalogy.gs.washington.edu/) and copy number variants

and indels from the v5 release of the Database of Genomic

Variants (http://projects.tcag.ca/variation/). All positions were

based on NCBI Build 35. Equivalent positions from the HapMap

Phase 3 SNPs in build 36 were found by querying table SNP125

from the UCSC database (http://genome.ucsc.edu/cgi-bin/

hgTables). Average recombination rate for each of the regions

was calculated using the program rhomap [16] in the same way as

for the sperm typing region (Table S4).

X-chromosome genotypes
SNP genotypes for the X chromosome were obtained from the

HapMap website (www.hapmap.org). We downloaded SNP data

of the HapMap Phase 3 release #1 for the eleven populations:

ASW (African ancestry in Southwest USA), CEU (Utah residents

with Northern and Western European ancestry from the CEPH

collection), CHB (Han Chinese in Beijing, China), CHD (Chinese

in Metropolitan Denver, Colorado), GIH (Gujarati Indians in

Houston, Texas), JPT (Japanese in Tokyo, Japan), LWK (Luhya in

Webuye, Kenya), MEX (Mexican ancestry in Los Angeles,

California), MKK (Maasai in Kinyawa, Kenya),TSI (Tuscans in

Italy), YRI (Yoruba in Ibadan, Nigeria). Only SNPs genotyped in

all populations were used in further analysis.

To avoid phasing errors, only males were selected for

recombination analysis; heterozygote positions, which are expect-

ed to be erroneous, were considered as missing values (only 0.02%

of the positions were heterozygous). Individuals with .5% missing

genotypes (22 in total) were discarded; the rest of the missing

values were imputed using fastPHASE [20]. Thus, our final panel

consisted of 88 MKK, 43 LWK, 88 YRI, 34 ASW, 42 GIH, 40

CHB, 21 CHD, 42 JPT, 25 MEX, 74 CEU, 40 TSI, for a total of

537 X chromosomes.

To obtain the equivalent number of sequences from females we

followed the same procedure as males and selected 537 sequences

from the same populations in order to match the male dataset. We

phased and imputed the missing positions using two different

softwares: PHASE [18,19] and fastPHASE [20].

Statistical analysis
Nucleotide diversity was calculated using DnaSP [27] having

previously merged the sequences of each of the 18 regions

respectively. Recombinational diversity was calculated based on

recotype information in the same way as nucleotide diversity. PCA

and MDS were done using the R package [28]. For Principal

Component analysis (PCA), the input matrix consisted on the

recombination events present at least in two individuals as

variables and the proportion of chromosomes per population

carrying each event as cases. As the values were non normalized,

the correlation matrix was used to perform the PCA.

For the MDS analysis, the recombinational distance (DAB)

between populations A and B was computed as:

DAB~1{
RAB

RAzRB{RAB

� �

where RAB was the number of recombinations shared between

population A and B, RA was the number of recombinations

occurring in individuals in population A, and RB the number of

recombinations having occurred in individuals of population B.

Only those recombinations found in at least two different

populations were considered.

FST calculations were performed using Arlequin software

version 3.1 [29] and so was the Mantel’s test used to compare

the SNP-based FST matrix with the recombinational distance

matrix.

Supporting Information

Figure S1 Mean values taken from the analysis of 100

simulations with different IRiS settings: grain sizes (5, 10, 15, 20

and 30), different thresholds, defined as number of detections to be

considered as true divided by the grain size or the double of the

grain size in the cases in which the algorithm is run in two

directions. For each setting the algorithm could be run only on the

forward direction (F) or in both directions (FR). Figure S1A False

discovery rate (%). Figure S1B Sensitivity (%). Figure S1C 90%

confidence interval of the distance (measured in number of SNPs)

between the inferred breakpoint position and the real location.

Figure S1D, median age of the detected recombinations.

Found at: doi:10.1371/journal.pcbi.1001010.s001 (0.68 MB

DOC)

Figure S2 Mean values taken from the analysis of 100

simulations with different IRiS settings that combine different

grain sizes (indicated with different colors), different thresholds

(defined as number of detections to be considered as true divided

by the sum of the different grain size and multiplied by two since

the algorithm is run in the two directions). All settings included

running the algorithm in the two possible senses. Figure S2A False

discovery rate (%). Figure S2B Sensitivity (%).Figure S2C. 90th

percentile distance from the breakpoint location measured in

number of SNPs.

Found at: doi:10.1371/journal.pcbi.1001010.s002 (0.53 MB

DOC)

Figure S3 Plot showing the relationship between the false

discovery rate and the number of COSI simulations under a

scenario in which IRiS is given a different dataset than the one

used to compare it with the COSI results.

Found at: doi:10.1371/journal.pcbi.1001010.s003 (0.02 MB

DOC)

Figure S4 Each dot represents mean values of false discovery

rate and median age of the detected recombinations taken from

the analysis of 100 simulations with different IRiS settings that

combine different grain sizes (indicated with different colors) and

different thresholds. All settings included running the algorithm in

the two possible senses.

Found at: doi:10.1371/journal.pcbi.1001010.s004 (0.29 MB

DOC)

Figure S5 Plot showing values of the number of times in silico

recombination events were detected by IRiS run with no threshold

depending on the breakpoint location along the sequence.

Different colors indicate different ways to produce the recombi-

nant sequence, from light gray to black: ‘‘random’’ indicates that

parental haplotypes were taken at random, ‘‘1dif near bkp’’

indicates that parental sequences had to be different near the

breakpoint region (plus minus 10 SNPs), ‘‘2 dif near bkp’’ indicates

that parental sequences had to be different near the breakpoint

regions at both sides of the breakpoint, and ‘‘unique’’ indicates

that the parental sequences had to be different near the breakpoint

region and the recombinant sequence had to be unique within the
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breakpoint region. Below, the recombination rate estimated by

LDhat is shown, following the right axis.

Found at: doi:10.1371/journal.pcbi.1001010.s005 (0.15 MB

DOC)

Figure S6 MDS 2D plot based on a recombinational distance

matrix. The stress is 0.081 which is below the 0.16 stress obtained

with 1% probability with random data sets (citation: Sturrock K,

Rocha J (2000) A Multidimensional Scaling Stress Evaluation

Table. Field Methods 12: 49-60).

Found at: doi:10.1371/journal.pcbi.1001010.s006 (0.03 MB

DOC)

Table S1 Evaluation of IRiS with the optimal parameters for

different SNP ascertainments. SNP selection process is explained

in the methods section. Mean SNP density values are calculated

over all simulations.

Found at: doi:10.1371/journal.pcbi.1001010.s007 (0.04 MB

DOC)

Table S2 Percentage values on the number of times each of the

simulated event is either not detected, detected as 1 recombination

or as 2 recombinations. The percentage values are calculated over

1,000 in silico simulations.

Found at: doi:10.1371/journal.pcbi.1001010.s008 (0.03 MB

DOC)

Table S3 Number of recombinations detected in each of the 18

regions in the male dataset, female dataset and female dataset

when removing putative phasing errors. Females were phased

using both PHASE and fastPHASE without using male phase

information.

Found at: doi:10.1371/journal.pcbi.1001010.s009 (0.05 MB

DOC)

Table S4 The main characteristics of 18 X-chromosome

regions. From left to right: start position and end position in base

pairs (based on NCBI Build 36 assembly), length of each in base

pairs, number of SNPs (N SNPs), number of haplotypes (N haplo),

recombination rate calculated by means of Ldhat, Number of

recombinations detected, number of recotypes, average number of

recombinations detected by IRiS per Kb.

Found at: doi:10.1371/journal.pcbi.1001010.s010 (0.06 MB

DOC)
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